首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
交通状况预测是智能交通系统的一个重要组成部分,而车流量是交通状况最直接的体现,因而对交通流量进行预测具有重要的应用价值。一方面,城市中的道路本身带有空间拓扑性质,另一方面车流量随时间动态变化。因此交通流量预测问题的关键在于对数据中存在的时间和空间依赖进行建模。针对这一特性,使用神经网络模型和注意力机制来探索交通流量数据中的时空依赖关系,提出基于时间图注意力的交通流量预测模型。空间依赖方面,使用图卷积网络与注意力结合的学习算法对不同影响程度节点分配不同的权重,加入节点自适应学习,有效提取空间特征;时间依赖方面,使用时序卷积网络对时间特征进行提取,通过扩张卷积扩大感受域从而捕获较长时间序列数据的特征。由图注意力网络和时间卷积网络构成一个时空网络层,最终连接到输出层输出预测结果。该模型使用图卷积神经网络和注意力机制结合的方式提取空间特征,充分考虑了道路间的空间关系,利用时序卷积网络捕获时间特征。在两个真实的数据集上进行实验后发现,在未来15 min、30 min、60 min的时间段内该模型都有良好表现,结果优于现有基准模型。  相似文献   

2.
准确的城市区域交通流量预测对市区车辆调度、公交系统优化等具有重要指导意义。目前,大多数现有的交通流量预测方法只考虑规则网格区域上单一种类的交通流量预测,忽略了交通网络中空间的不规则性和异质性以及不同出行模式交通流的交互性。针对上述问题,提出了一种基于图对比学习的多模态交通流量协同预测方法(CoF-MGCL),以揭示各类出行方式之间的交互对不规则异构区域的交通需求的影响。具体而言,根据现实中城市的不规则区域采集多模态流量数据,包括各类出行模式流量(如自行车和出租车流量)和总流量;并对不规则区域构建多关系异构图,包括地理邻近和功能相似关系。通过异构图编码模块,可以结合异构图中不同的关系来学习各区域各类交通流量的高质量表征信息。学习到的单一交通流量表征经过注意力机制加权融合后与总交通流量表征进行图对比学习,以捕获不同出行模式之间的交互关系。最后,使用互信息约束实现多模态流量的协同预测,确保多模态信息学习最大化。为了实现不规则区域的多模态交通流量预测,自行构建了新的纽约市曼哈顿区和芝加哥市两地多模态交通流量数据集,并在此基础上进行实验。实验结果表明,所提方法可以结合现有的单模态交通流量预测模型...  相似文献   

3.
交通流预测是智能交通系统中实现城市交通优化的一种重要方法,准确的交通流量预测对交通管理和诱导具有重要意义.然而,因交通流本身存在高度时空依赖性而表现出复杂的非线性特征,现有的方法主要考虑路网中节点的局部时空特征,忽略了路网中所有节点的长期时空特征.为了充分挖掘交通流数据复杂的时空依赖,提出一种融合多种时空自注意力机制的Transformer交通流预测模型(MSTTF).该模型在嵌入层通过位置编码嵌入时间和空间信息,并在注意力机制层融合邻接空间自注意力机制,相似空间自注意力机制,时间自注意力机制,时间-空间自注意力机制等多种自注意力机制挖掘数据中潜在的时空依赖关系,最后在输出层进行预测.结果表明, MSTTF模型与传统时空Transformer相比, MAE平均降低了10.36%.特别地,相比于目前最先进的PDFormer模型, MAE平均降低了1.24%,能取得更好的预测效果.  相似文献   

4.
为了充分获取交通流量数据中隐藏的复杂动态时空相关性,提高交通流量预测精度,提出一种多头注意力时空卷积图网络模型MASCGN。首先,采用多头注意力机制为路网中的交通传感器节点自动分配注意力权重,实现对不同邻居节点的权值自适应匹配,充分获取空间相关性;其次,采用带有门控和注意力机制的时空卷积网络充分提取时间序列相关性,并使用残差块结构实现时空卷积层之间的连接,使得模型更具有泛化能力;最后,分别提取周相关、日相关、邻近时间的序列数据,输入三个并行的时空组件以挖掘周、日、邻近三个时间窗口间的时间周期相关性,并通过全连接层获取最终的交通流量预测结果。利用高速公路交通数据集PEMSO4、PEMSO8进行了15 min、30 min、45 min和60 min的交通流量预测实验。实验结果表明MASCGN模型与现有基线模型相比,在未来短期和长期的交通流量预测任务上都具有更优的建模能力。  相似文献   

5.
城市交通流量预测是构建绿色低碳、安全高效的智能交通系统的重要组成部分.时空图神经网络由于具有强大的时空数据表征能力,被广泛应用于城市交通流量预测.当前时空图神经网络在城市交通流量预测中仍存在以下两方面局限性:1)直接构建静态路网拓扑图对城市空间相关性进行表示,忽略了节点的动态交通模式,难以表达节点流量之间的时序相似性,无法捕获路网节点之间在时序上的动态关联.2)只考虑路网节点的局部空间相关性,忽略节点的全局空间相关性,无法建模交通路网中局部区域和全局空间之间的依赖关系.为打破上述局限性,本文提出了一种多视角融合的时空动态图卷积模型用于预测交通流量.首先,从静态空间拓扑和动态流量模式视角出发,构建路网空间结构图和动态流量关联图,并使用动态图卷积学习节点在两种视角下的特征,全面捕获城市路网中多元的空间相关性.其次,从局部视角和全局视角出发,计算路网的全局表示,将全局特征与局部特征融合,增强路网节点特征的表现力,发掘城市交通流量的整体结构特征.接下来,设计了局部卷积多头自注意力机制来获取交通数据的动态时间相关性,实现在多种时间窗口下的准确流量预测.最后,在四种真实交通数据上的实验结果证明了本文模型的有效性和准确性.  相似文献   

6.
滕建  滕飞  李天瑞 《计算机科学》2021,48(12):195-203
可靠的区域出行需求预测能够为交通资源的调度和规划提供合理有效的建议.但是,出行预测是一个非常具有挑战性的问题,面临海量的时空大数据建模问题,如何有效地提取时空大数据中的空间特征和时间特征,成为当前城市计算的研究热点.文中提出了一种基于3D卷积和编码-解码注意力机制的需求预测模型(3D Convolution and Encoder-Decoder Attention Demand Forecasting,3D-EDADF),用于同时预测城市区域的出行需求流入量和流出量.3D-EDADF模型首先利用3D卷积来提取时空数据的时空相关性,然后使用LSTM编码解码来对时间依赖性进行捕获,并结合注意力机制来描述流入流出的差异性.3 D-EDADF模型对临近依赖性、日常依赖性和周期依赖性这3种时间依赖特征进行混合建模,然后将它们的多维特征进行加权融合得到最终的预测结果.采用真实的出行需求数据集进行了大量的实验,结果表明,与基准模型相比,3 D-EDADF模型的整体预测误差较低,具有较好的预测性能.  相似文献   

7.
准确的交通流量预测在帮助交通管理部门采取有效的交通控制和诱导手段以及帮助出行者合理规划路线等方面具有重要意义。针对传统深度学习模型对交通数据时空特性考虑不足的问题,在卷积神经网络(CNN)和长短时记忆(LSTM)单元的理论框架下,结合城市交通流量的时空特性,建立了一种基于注意力机制的CNN-LSTM预测模型——STCAL。首先,采用细粒度的网格划分方法来构建交通流量的时空矩阵;其次,利用CNN模型作为空间组件来提取城市交通流量不同时期下的空间特性;最后,利用基于注意力机制的LSTM模型作为动态时间组件来捕获交通流量的时序特征和趋势变动性,并实现交通流量的预测。实验结果表明,STCAL模型与循环门单元(GRU)和时空残差网络(ST-ResNet)相比,均方根误差(RMSE)指标分别减小了17.15%和7.37%,均绝对误差(MAE)指标分别减小了22.75%和9.14%,决定系数(R2)指标分别提升了11.27%和2.37%。同时,发现该模型在规律性较高的工作日的预测效果好于周末,且对工作日早高峰的预测效果最好,可见该模型可为短时城市区域交通流量变化监测提供依据。  相似文献   

8.
随着深度学习的发展,神经网络在各个领域都有着大量的应用,智慧交通系统也不例外.交通流预测是智慧交通系统的基石,是整个交通预测的核心所在.近年来,图卷积神经网络的利用有效地提高了交通预测的性能,如何进一步提高对图的时空特征进行捕获的能力,将会成为热点.为了提升交通预测的精度,提出了一种基于双路信息时空图卷积网络的交通预测模型.首先,针对图卷积网络的交通预测模型在长距离依赖上建模有所不足,并且没有完全挖掘时空图信息之间的隐藏关系以及在时空图结构上还有信息缺失,提出了一种三重池化注意力机制来建模全局上下文信息.通过对图卷积层和时间卷积层各增加并行的三重池化注意力路径,构造了一个双路信息时空卷积层,提升了卷积层的泛化能力及模型捕获长距离依赖的能力,同时让时空卷积层能够很好地捕获时空图结构上的空间和时间特征,从而有效地提升了交通预测性能.在两个公共交通数据集(METR-LA和PEMS-BAY)上的实验结果表明,该模型具有较好的性能.  相似文献   

9.
交通流精准预测对保障公共安全和解决交通拥堵具有重要的意义,在城市交通规划、交通管理、交通控制等起着重要的作用.交通预测由于其受限制于城市路网并且随着时间动态变化,其中存在着空间依赖与时间依赖,是近些年来具有挑战性的课题之一.为了同时捕获到空间和时间上的依赖,提出了一个新的神经网络:基于注意力机制的时空图卷积网络(A-TGCN).TGCN网络模型用于捕获交通数据中的动态时空特性与相关性,采用注意力机制来增强每个A-TGCN层中关键节点的信息.通过在两组数据上的实验结果表明,A-TGCN在精度以及可解释性方面都有很好的表现.  相似文献   

10.
周安众  谢丁峰 《软件工程》2023,(8):48-52+62
针对现有交通流预测模型在预测精度上的不足,提出一种基于注意力机制的图模型。首先,利用多头注意力机制在交通图中编码高阶邻域结构,提取交通网络中的高阶空间特征。然后,嵌入长距离时间结构注意力机制提取长期性的历史周期信息。模型采用注意力机制替代传统的局部卷积核结构,可以有效提取长距离时空依赖关系。在METR-LA(洛杉矶路网)、PeMS-BAY(加州湾区路网)、PeMS-S(加州小型路网)三个真实的交通数据集上进行实验证明,模型在预测未来60 min的交通流精度上较传统深度学习方法,RMSE(均方根误差)平均降低3.1%、3.9%和1.8%,表明所提模型的长时间预测能力优势明显。  相似文献   

11.
李浩  王飞  谢思宇  寇勇奇  张兰  杨兵  康雁 《计算机科学》2021,48(z2):159-165,183
随着智慧城市的建设,城市交通流量预测在智能交通预警和交通管理决策方面至关重要.由于复杂的时空相关性,有效地对交通流量进行预测成为了一项挑战.现有的对交通流量进行预测的方法大多采用机器学习算法或深度学习模型,而它们各有优缺点,若能够将两者优点结合起来,将进一步提高交通流量预测的精度.文中针对交通时空数据,提出了一种基于改进图波网(Graph WaveNet)的双重自回归分量交通预测模型.首先,通过门控3分支时间卷积网络有效融合3个时间卷积层,从而进一步提升了捕获时间相关性的能力;其次,首次引入自回归分量,将自回归分量和门控三分支时间卷积网络、图卷积层有效融合,使模型能够充分反映时空数据之间的线性和非线性关系.在METR-LA和PEMS-BAY两个真实的公共交通数据集上进行实验,并将所提模型与其他交通流量预测基准模型进行比较.结果表明,不管是短时间还是长时间的预测,文中所提模型在各个指标上都优于基准模型.  相似文献   

12.
时空预测任务在污染治理、交通、能源、气象等领域应用广泛. PM2.5浓度预测作为典型的时空预测任务, 需要对空气质量数据中的时空依赖关系进行分析和利用. 现有时空图神经网络(ST-GNNs)研究所使用的邻接矩阵使用启发式规则预定义, 无法准确表示站点之间的真实关系. 本文提出了一种自适应分层图卷积神经网络(AHGCNN)用于PM2.5预测. 首先, 引入了一种分层映射图卷积架构, 在不同层级上使用不同的自学习邻接矩阵, 以有效挖掘不同站点之间独特的时空依赖. 其次, 以基于注意力的聚合机制连接上下层邻接矩阵, 加速收敛过程. 最后, 将隐藏的空间状态与门控循环单元相结合, 形成一个统一的预测架构, 同时捕捉多层次的空间依赖关系和时间依赖关系, 提供最终的预测结果. 实验中, 我们与7种主流预测模型进行对比, 结果表明该模型可以有效获取空气监测站点之间的时空依赖, 提高预测精确度.  相似文献   

13.
传统的交通流量预测模型对历史数据进行时空建模,忽略了交通数据的时间周期性内部潜在关系和交通路网间节点的距离特征和相似性空间特征。据此,提出面向交通流量预测的多通道时空编码器模型MC-STGNN,用来提高交通流量预测的准确率。首先将交通数据处理成三通道的周期性时间序列,并对整体的序列数据进行时间位置编码和自适应的空间位置编码,提取路网节点间的动态相关性;其次引入具有卷积结构的多头自我注意力机制,更大程度地捕获周期数据不同程度的时间相关性;最后提出一种图生成器生成新的时空图,提取路网节点间的相似性和距离特征,并利用门控图卷积网络整合原始图和新时空图的空间信息。在高速公路数据集PEMS03和PEMS08上进行一小时的交通流量综合预测实验,结果表明,MC-STGNN模型与其他的基线模型相比,具有更佳的性能指标,说明MC-STGNN模型具有更优的建模能力。  相似文献   

14.
交通预测在智能交通中有着重要的意义和应用.由于交通数据的复杂性和高度的非线性,精确的交通预测的核心挑战在于如何对复杂的空间相关性和时间动态建立模型.在现实生活中,我们发现:1)区域间的空间依赖是动态的;2)时间依赖有日和周的模式,但由于有动态时间变化,它不具有严格周期性.为了解决这两个问题,我们提出了一个新的时空注意力网络(STAN),该模型的主要思想是区域间的动态相似性用一个门控机制学习,长期周期性时间转移现象由一个周期性注意力转移机制来学习,并考虑交通道路、天气状况等外部因素.通过与不同的方法在两个数据集上进行评估,实验结果表明,我们提出的模型有更好的准确性.  相似文献   

15.
针对现有交通流量预测算法大多仅考虑常态下的预测,而未考虑天气属性、周围地理属性对预测结果的影响,提出一种融合外部属性的组合预测模型(A-STIGCN)。首先,将外部属性作为路网中路段的属性,同时对路段的属性和交通特征进行建模,得到增强的特征向量。其次,采用图小波变换和自适应矩阵分别提取交通流局部和全局空间特征信息,并借助门控循环单元(GRU)对时间信息的长时记忆能力以提取其时间特性。最后,通过注意力机制来捕获时空动态变化性进行交通流预测。采用深圳出租车轨迹数据、对应天气数据以及POI数据进行预测,研究结果表明:A-STIGCN组合模型预测效果优于传统线性模型及变体模型,与未引入注意力机制的ASTGCN模型相比,MAE降低了约0.131,精度提高了0.068,与未引入外部因素的TGCN模型对比分析,MAPE降低了约0.637%,精度提高了0.079,从而更好地为交通管理提供指导意见。  相似文献   

16.
交通流预测一直是交通领域的研究热点,针对现有交通流预测研究大多为常态下的预测,而未考虑天气、节假日等外部因素的影响,提出了一种融合多因素的短时交通流预测模型。通过长短时记忆网络(long short-term memory,LSTM)捕捉时间序列的长期依赖关系,引入注意力机制,利用注意力机制自适应地选择相应的驱动序列,实现短时交通流的预测。实验分别与传统模型、未引入注意力机制的CLA-ATTN模型及未融合多因素的CLA-MFACTOR模型进行对比分析,结果证明所提出的CLA模型具有较高的预测准确度,是一种较好的预测方法。  相似文献   

17.
康雁  陈铁  李浩  杨兵  张亚钏  卜荣景 《计算机科学》2021,48(10):177-184
交通流量信息是智能交通系统和城市计算的重要基础.交通流量数据作为新型时序数据,由于数据的采集方式和外部复杂因素的影响,使得数据缺失现象是常见且无法避免的.如何有效地挖掘交通流量数据的时空特性和数据间的关联成为了提高缺失数据补全精度的关键.传统的统计学方法不能满足日益增长的数据需求,深度学习的应用推动了缺失数据的补全方法向更高的精确度发展.文中深入分析了交通流量的时间特性和空间分布,对交通流量的缺失情况进行了假设,提出了一种UMAtNet(U-net with Multi-View Attention Mechanisms)交通流量补全模型.该模型将短期的、趋势的、周期的时间数据与空间数据融合,同时采用不同的数据相关性测量方法,融合了一种多视图注意力机制,能够优化模型对缺失部分数据空间相关性的影响.为了验证模型的有效性,文中使用北京交通轨迹开源数据集进行实验,并在实验中详细地分析了模型各部分和损失函数对补全精度的影响,实验结果表明,UMAtNet和相应组件融合能进一步提高补全精度.  相似文献   

18.
针对传统的信息预测缺乏对用户全局性依赖挖掘进行研究,提出了一种融合超图注意力机制与图卷积网络的信息扩散预测模型(HGACN)。首先构建用户社交关系子图,采样获得子级联序列,输入图卷积神经网络学习用户社交关系结构特征;其次,综合考虑用户间和级联间的全局依赖,采用超图注意机制(HGAT)学习用户不同时间间隔的交互特征;最后,将学习到的用户表示捕获到嵌入模块,利用门控机制将其融合获得更具表现力的用户表示,利用带掩码的多头注意力机制进行信息预测。在Twitter等五个数据集上的实验结果表明,提出的HGACN模型在hits@N提高了4.4%,map@N提高了2.2%,都显著优于已有的MS-HGAT等扩散预测模型,证明HGACN模型是合理、有效的。这对谣言监测以及恶意账户的检测有非常重大的意义。  相似文献   

19.
付宇  张博健  温延龙 《计算机与数字工程》2021,49(12):2425-2430,2489
近年来,大规模在线开放课程(MOOCs)发展迅速,吸引了学界的广泛关注.用户退课率极高这一问题的长期存在,使得退课行为预测成为了一个重要的研究课题.目前的退课行为预测模型过于依赖传统的机器学习算法.此外,很多研究忽视了MOOCs用户灵活修课的特点,采用时序无关的方法进行预测.针对目前该领域存在的问题,论文提出了一种融合注意力机制的时序预测模型.该模型首先利用长短期记忆网络从原始的时序数据中学习新的时序隐态表示,再使用多个一维卷积神经网络提取隐态中各类特征的时序模式,最后融合注意力机制,使模型能够通过注意力分布值强化有效特征.实验结果表明,该方法的预测能力优于其他方法.  相似文献   

20.
交通预测是构建智能交通系统的重要技术,实时准确的交通预测有利于规划路线,提高出行效率。为提高交通速度预测精度,提出一种基于图卷积网络的短时交通速度预测模型。首先对交通速度数据进行时空特征分析,然后结合数据空间特性构造可学习的邻接矩阵来建立图卷积网络,同时考虑到交通数据的时间特性,因此在图卷积的基础上又添加了长短期记忆网络和注意力机制来共同构建预测模型。实验结果表明由于同时考虑了交通速度数据的时空特性,本文模型均方根误差、平均绝对误差和平均绝对百分比误差均小于传统模型和单个模型,验证了提出的模型预测精确度更高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号