首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glass–ceramics that can be used at temperatures of 1200–1500 °C are found in the alkaline earth aluminosilicate field, and are generally nucleated internally with titania. These glass–ceramics have good strength (>100 MPa, abraded), can be tailored to produce high fracture toughness (2–5 MPa m1/2), and have good dielectric properties. Coefficients of thermal expansion (CTEs) are low to moderate ((25–45) × 10?7 °C?1, from 25 to 1000 °C).The major crystalline phase in the glass–ceramics exhibiting the lowest CTEs is hexagonal cordierite (indialite), while important toughening accessory phases are enstatite and acicular magnesium dititanate.The most refractory glass–ceramics that are easily melted at 1650 °C, yet when crystallized do not deform at 1450 °C, are based on strontium and barium monoclinic feldspars of the celsian type. CTEs range from 35 to 45 × 10?7 °C?1. Acicular mullite is an important accessory phase aiding fracture toughness in these materials.Mullite glass–ceramics which contain considerable siliceous residual glass are probably the most refractory of these glass–ceramics, but they require melting above 1700 °C. Nevertheless, they can be used at temperatures near 1600 °C.Potential applications for refractory glass–ceramics include improved radomes, engine components, substrates for semiconductors and precision metallurgical molds.  相似文献   

2.
Pollucite has been proposed as an ideal candidate material for addressing the critical challenge of the safe trapping of the 137Cs radionuclide. However, its detailed corrosion mechanism remains elusive. In this work, we performed reactive and ab initio molecular simulations to explore the leaching behavior of Cs+ from pollucite glass–ceramics at the initial stage. The nonbridging oxygen ions on the surface are protonated at first, followed by the release of Cs+ associated with these oxygen ions. For the glass phase, the inner Cs+ could leach out due to the interaction with water molecules, whereas only the Cs+ present at the surface leach out for pollucite, confirming its remarkable chemical stability. The hydrolysis of Si/Al–O bonds in pollucite is thermodynamically unfavorable, and Al–O bonds are the weak spots. Moreover, the migration barriers of Cs+ in pollucite were calculated by the climbing image nudged elastic band method, and the high barriers reveal that pollucite immobilizes Cs+ stably. This study paves the way for predicting the long-term safety of a nuclear waste immobilization repository.  相似文献   

3.
Industrial plasma melting of municipal solid waste (MSW) incinerator fly ashes leads to a glass that may be easily crystallised to gehlenite glass–ceramics, by the sintering of fine glass powders. However, since the glass composition is not optimised for glass–ceramic manufacturing, the viscous flow is much hindered by a very significant surface crystallisation and dense glass–ceramics are feasible only by sintering above 1000 °C. This paper reports a new strategy for obtaining dense and strong glass–ceramics at 950 °C, with a holding time of only 30 min, consisting of the mixing of waste glass with a secondary recycled glass, such as soda-lime–silica glass or borosilicate glass. For an optimum balance between the two types of glass also the addition of kaolin clay, in order to favour the shaping, was found to be feasible. The approach had a positive effect, besides on the mechanical properties (e.g. bending strength exceeding 100 MPa), on the chemical stability.  相似文献   

4.
M–Si–Al–O–N (M=Y, Ca, Mg) oxynitride glasses were prepared by melting batches at 1600 °C for 2 h under N2 atmosphere in a Si–Mo-heated resistance furnace. The appropriate heat treatment temperatures were selected according to the information provided by the differential scanning calorimeter (DSC) measurement. X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to study the crystallization behavior of the glass–ceramics with different modifier elements. The results indicate that for this glass system, heat treatment has an effect on volume fraction of the crystalline phases and the microstructure of the glass–ceramics, whereas the effect on the types of the crystalline phases precipitated is small.  相似文献   

5.
Formation of transparent glass–ceramic in the system MgO–SiO2–Al2O3–K2O–B2O3–F with and without addition of LiF and NaF has been investigated. Crystallization of glass-sample was conducted by controlled thermal heat-treatment, at determined nucleation and crystallization temperatures. In this regard, the effects of addition of LiF and NaF were investigated on the crystallization behavior and transparency of the samples.Low transmission (less than 80% at 600 nm) was observed in the basic composition (K).The addition of NaF and LiF caused more intense phase separation in the system.The results indicated that the glass–ceramic can remain transparent if fine grains with nano size are precipitated but will turn into opaque when large grains appear, because of the difference in the refractive index between glass and precipitated crystals.  相似文献   

6.
Eu-doped transparent mica glass–ceramics were prepared, the influence of Eu-doping on the crystallization of the parent glasses was investigated and the luminescent properties of the parent glasses and the glass–ceramics were estimated. A small additive amount of Eu element was very effective in preparing transparent mica glass–ceramics. However, the excess addition led to the coarsening of phase separation in the glass phase and the separation of unidentified crystal phases and β-eucryptite during heating of the parent glasses, which caused white opaque at lower heating temperatures. When mica crystals were separated, Eu ions entered the interlayers of mica crystals. The observed emission and excitation spectra showed that parts of Eu3+ ions which were added as Eu2O3 were reduced to Eu2+ ions during melting of the starting materials and heating the parent glasses in air and the energy transfer from Eu2+ to Eu3+ ions occurred.  相似文献   

7.
K. Zhang  B. Li 《应用陶瓷进展》2015,114(2):121-125
Crystallisation of magnetite in multicomponent glass melts was investigated. Structural features and magnetic properties were tested using X-ray diffraction, scanning electron microscope techniques, vibrating sample magnetometer and Mössbauer spectroscopy at room temperature. The results show that the magnetite phase was detected in the glass–ceramic samples after heat treatment at higher crystallisation temperature (over 900°C). Fe2+ and Fe3+ ions contribute to the formation of magnetite crystal. Various crystal morphologies were observed. Isomer shift values suggest that Fe3+ and Fe2+ are in tetrahedral and octahedral coordination respectively. The saturation magnetisation tends to increase with the crystallisation temperature.  相似文献   

8.
Glass–ceramics, containing apatite and wollastonite (A/W) crystals in the MgO–CaO–SiO2–P2O5 glassy matrix, show the ability to form tight chemical bonds with living tissues when implanted in the body, as demonstrated by Kokubo and co-workers. However, the medical applications are mainly limited to non-load bearing conditions because of their poor mechanical properties. To overcome this drawback, a coating of the A/W glass–ceramic could be deposited onto a titanium substrate, in order to combine the good bioactivity of the bioceramic and the good mechanical strength of the titanium alloy base material. In this study, A/W powders obtained from commercial raw materials were thermally sprayed by APS (atmospheric plasma spraying) on Ti–6Al–4V substrates. Since in the as-sprayed conditions the coating microstructure was defective because of pores and cracks, thermal treatments on A/W plasma-sprayed coatings were conducted to enhance the coating microstructure. In order to gain a deeper insight, A/W bulk and sintered samples of the same composition were prepared and subjected to the same thermal treatments. In addition, the crystallisation behaviour of A/W bioactive glass–ceramic was investigated. The frits thermal behaviour was characterised by means of hot stage measurements and DTA analysis. DTA analysis on the A/W base glass, revealed two crystallisation peaks at about 1150 and 1193 K, corresponding to the crystallisation of oxyapatite and β-wollastonite phases, respectively. The two corresponding activation energies, calculated with the Kissinger equation, were also reported.The microstructure and the crystallinity of the A/W glass–ceramics were evaluated depending on the thermal treatment. The morphology and the microstructure were observed by SEM and the crystalline phases were detected by X-ray diffraction. Finally the porosity was determined via image analysis.  相似文献   

9.
Glass–ceramics (GCs), obtained by controlled crystallization of a specially formulated precursor glass, are interesting materials that show great promise in obtaining superior properties compared to those of the precursor glass. Controlled crystallization enables creation of a microstructure with multiple phases which impacts macroscale properties in interesting ways. The present work develops microstructure-scale computational models using the theory of peridynamics to investigate the increase in fracture toughness of GCs compared to traditional glass. Computational modeling is a promising tool to probe microstructural mechanics, but such studies in the literature are scarce. In this work, the theory of peridynamics, a non-local theory of continuum mechanics, is applied to simulate crack propagation through microstructural realizations of a model lithium-disilicate glass–ceramic. The crystalline and glassy phases within the microstructure are explicitly considered, with the size and shape of crystals inspired by experimental data. Multiple toughening mechanisms are revealed, which are functions of crystallinity and morphology, and the impact on fracture toughness is demonstrated. Crack path tortuosity is studied, and it is found that an optimum level of crack path tortuosity can be obtained in the range of 0.6–0.8 crystallinity. Numerical results are shown to agree well with previously published experimental and modeling results.  相似文献   

10.
Although glass–ceramics have been widely explored for their thermal stability and mechanical properties, they also offer unique symmetry-dependent properties such as piezoelectricity and pyroelectricity through controlled crystallization of a polar phase. This work examines crystallization of LiNbO3 in a 35SiO2–30Nb2O5–35Li2O mol% composition and crystallization of LiNbO3 and NaNbO3 in a 35SiO2–30Nb2O5–25Li2O–10Na2O mol% composition. Crystallization kinetics are examined using the Johnson–Mehl–Avrami–Kolmogorov (JMAK) theory where the Avrami exponent, n, is calculated to be 1.0–1.5. Microscopical analysis shows dendritic morphology, which when combined with the JMAK analysis, suggests diffusion-controlled one-dimensional growth. Adding Na2O to the glass composition increases the inter-diffusivity of ions which causes LiNbO3 to crystallize faster and lowers the activation energy of transformation from 1054 ± 217 kJ/mol in the ternary composition to 882 ± 212 kJ/mol. Time-temperature-transformation diagrams are presented which show that the temperature for maximum rate of transformation for LiNbO3 is ∼650°C and for NaNbO3 is ∼715°C.  相似文献   

11.
《Ceramics International》2015,41(7):8541-8551
Densification behavior and microstructure evolution of hot-pressed SiC–SiBCN ceramics were studied between 1660 °C and 1830 °C. Polyborosilazane was chosen as the SiBCN precursor and pyrolyzed at 1000 °C in inert atmosphere before use. Samples with SiBCN contents of 10% and 20% in weight were prepared. During the sintering, at temperatures <1660 °C, the density of all the samples showed a minor increase because of solid state particles rearrangement. Above 1660 °C, the density increased rapidly because of the grain boundary sliding with a non-Newtonian viscous boundary phase. After grain boundary sliding, grain-boundary diffusion enhanced by B and C elements from the SiBCN material was responsible for the further densification. The microstructure of the samples hot pressed at 1660 °C appeared particle packing state. The two samples can achieve almost full density when they were hot pressed at 1830 °C/40 MPa for 90 min.  相似文献   

12.
Ferrimagnetic glass–ceramics are promising candidates for magnetic induction hyperthermia, which is one form of inducing deep-regional hyperthermia, by using a magnetic field. The aim of this work was to study the effect of increasing the amount of crystallized magnetite on the magnetic properties of glass–ceramic samples. Two different ferrimagnetic glass–ceramics with the composition based on wollastonite or hardystonite with high quantity (∼60%) of magnetite were prepared by melting the starting materials at 1450 °C for 2 h. The influences of chemical composition, amount of crystallized magnetite and microstructure of ferrimagnetic glass–ceramics on magnetic properties of ferromagnetic glass–ceramics were investigated using differential thermal analysis (DTA), X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM). The X-ray diffraction patterns show the presence of nanometric magnetite crystals in a glassy matrix after cooling from melting temperature. The amount of crystallized magnetite varies as a function of the chemical composition and heat treatment schedule. The presence of ZnO in the glass–ceramics was found to decrease the viscosity and so cases higher degree of mobility of ions leading to higher degree of crystallinity. The higher heat treatment parameters and so the lower viscosity of the glass containing ZnO are assumed to allow the magnetite to grow to larger crystallite size. Glass transition temperature and thermal stability were found to be functions of chemical composition. Magnetic hysteresis cycles were analyzed using a vibrating sample magnetometer (VSM) with a maximum applied field of 15 kOe at room temperature in quasi-static conditions. From the obtained hysteresis loops, the saturation magnetization (Ms), remanance magnetization (Mr) and coercivity (Hc) were determined. The results showed that these materials are expected to be useful in the localised treatment of cancer.  相似文献   

13.
《Ceramics International》2022,48(18):25781-25787
In present work, we discovered that nano-crystallization behavior of Ge–S binary chalcogenide glass can be remarkably improved by incorporating trace amount of CsCl as nucleating agent. After implementing an annealing process, the resultant Ge-S-CsCl chalcogenide glass ceramics (GSC ChGCs) possess fine distribution of crystallites belonging to GeS2 and GeS mixture phase which could enhance mechanical strength and narrow bandgap energy of the original glass. By utilizing femtosecond Z-scan method, nonlinear optical properties of the GSC ChGCs were investigated in a spectral range from 750 to 900 nm. The results showed that the nonlinear absorption attribute of the GSC ChGCs can be enhanced by the crystallinity increase which led to the maximum two-photon absorption coefficient of 19.57 cm/GW at excitation wavelength of 750 nm, increased by 78% as compared to the original glass. This indicates the current GSC ChGCs a promising candidate for the optical limiting devices.  相似文献   

14.
Dense sintered esseneite–wollastonite–plagioclase glass–ceramics have been successfully prepared from a vitrified mixture of important inorganic waste (Bayer process red mud, fly ash from lignite combustion and residues from the polishing of porcelain stoneware tiles). The enhanced nucleation activity of fine glass powders, favoured by particular oxidation conditions, caused a substantial crystallisation, even in the case of very rapid thermal treatments at 900 °C, which led to remarkable mechanical properties (bending strength and Vickers micro-hardness exceeding 130 MPa and 7 GPa, respectively) and a promising chemical durability.  相似文献   

15.
Glass samples with composition of (50?X) PbO–X MgO–25 TiO2–25B2O3 (where X=0, 5, 10 and 15 mol%) were prepared using conventional quenching technique. The amorphous nature of glass samples were confirmed by XRD. The glass transition temperature, Tg and crystallization temperature Tc were determined from the DTA. It has been observed that the addition of MgO enhances the Tg. The rise in Tg with MgO content may be attributed to the greater field strength of Mg2+ cation (as compared to Pb2+) which leads to the formation of stronger bonds. These glass samples were converted to glass–ceramics by following a two-stage heat treatment schedule. It was observed that there was good correlation between the density and CTE results of the glass–ceramics. The XRD results revealed the formation of tetragonal lead titanate as a major crystalline phase in the glass–ceramics. The addition of MgO to the glass contributes to the formation of MgB4O7. The dielectric constant for all the glass–ceramic samples was observed to be higher than that of corresponding glass samples. Further, with addition of MgO the room temperature dielectric constant for glass–ceramic samples increases up to 10 mol% of MgO and then decreases for 15 mol%. It has been further observed that the variation of dielectric constant of glass–ceramic samples with MgO content is exactly opposite to the variation of crystallite size of PbTiO3 embedded in the glass ceramic-samples.  相似文献   

16.
《Ceramics International》2020,46(7):9207-9217
Modification of glass network and crystallization process of a CaO–Al2O3–MgO–SiO2 (CAMS) based glass ceramic to form diopside through addition of iron oxide were investigated using differential thermal analysis (DTA), Raman spectrum, X-ray diffraction, SEM and EBSD techniques. The experimental results showed that addition of Fe2O3 led to remarkable reductions in both the glass transition temperature (Tg) and crystallization temperature (Tp) of the CAMS glass ceramic. At addition level below 5 wt%, the Tg and Tp temperatures were 651°C and 903°C, respectively, and the crystallization only occurred on the surface of the glass ceramic samples. Increasing the addition level to 10 wt% and 15 wt%, not only led to reduction in the Tg and Tp temperatures to 643-641°C and 892-876°C, respectively, but also promoted the formation of crystalline diopside throughout the CAMS samples. Based on the results of Raman spectrums, it was confirmed that Fe2O3 addition reduced the strength of glass connection as a result of chemical reactions between the isolated Si–O tetrahedron and Fe3+ ion, forming Fe3+O4–SiO4, which can be regarded as Q2 unit. And this is the first experimental evidence that proving the approach of Fe3+ mending glass network. Microstructural examination also identified the formation of large numbers of spherical Fe-enriched regions within the CAMS glass matrix as a result of the amorphous phase separation due to the Fe2O3 addition. The interfaces between the Fe-enriched regions and the glass matrix acted as preferred nucleation sites for the diopside, facilitating the crystallization. Crystallographic analysis using EBSD technique determined the <001> as the most favorite growth direction for the diopside crystals in the CAMS based glass ceramic.  相似文献   

17.
Glasses and glass ceramics of the xMoO3(100?x)[7GeO2·3PbO] system where x=0–30 mol% MoO3 were synthesized and characterized in order to obtain information about the structural correlations and the relationship between structure and physical properties in these materials. Changes of the FTIR, UV–vis and EPR data are discussed in view of the glass network structural changes determined by the evolution of molybdenum ions state, glass composition and MoO3 concentration.The spectroscopic studies indicate that with increasing of MoO3 content a fraction of the Mo6+ ions convert Mo3+ and Mo5+ ions. Accordingly, these modifications cause the depolymerization of the host network, the increase of the structural disorder and formation of GeO2 and PbMoO4 crystalline phases. The shape of EPR spectra is modified by the increase of the MoO3 concentration indicating that molybdenum ions exists in glass and glass ceramics in more than one valence state. The EPR spectra contain a broad line located at g~5.2 and, for the samples with a MoO3 content up to x≥15 mol%, the presence of the hyperfine structure characteristic for the Mo5+ ions can be observed, too.The electrochemical performances of the glass and glass ceramics samples with x=10 and 30 mol% MoO3 were demonstrated by cyclic voltammetry.  相似文献   

18.
Lithium aluminum silicate glasses of composition (wt%) 12.6Li2O–71.7SiO2–5.1Al2O3–4.9K2O–3.2B2O3–2.5P2O5 were prepared by the melt quench technique. These glasses were converted to glass–ceramics based on DTA data. X-ray diffraction (XRD) and Fourier transform infra-red spectroscopy (FTIR) were used to discern the phases evolved in the glass–ceramics. Phase morphology was studied using scanning electron microscopy (SEM). Thermal expansion coefficient (TEC) and glass transition temperature (Tg) of all samples were measured using thermo-mechanical analyzer (TMA). It was found that 3 h dwell time at crystallization temperature yielded samples with good crystallinity with a TEC of 9.461 × 10−6 °C−1. Glass–ceramic-to-metal compressive seal with SS-304 was fabricated using LAS glass–ceramic. The presence of metal housing and compressive stresses at the glass–ceramic-to-metal interface reduced average grain size and changed the overall microstructure.  相似文献   

19.
For the development of a new wear resistant and chemically stable glass-ceramic glaze, the CaO–ZrO2–SiO2 system was studied. Compositions consisting of CaO, ZrO2, and SiO2 were used for frit, which formed a glass-ceramic under a single stage heat treatment in electric furnace. In the sintered glass-ceramic, wollastonite (CaSiO3) and calcium zirconium silicate (Ca2ZrSi4O12) were crystalline phases composed of surface and internal crystals in the microstructure. The internal crystal formed with nuclei having a composition of Ca1.2Si4.3Zr0.2O8. The CaO–ZrO2–SiO2 system showed good properties in wear and chemical resistance because the Ca2ZrSi4O12 crystals positively affected physical and mechanical properties.  相似文献   

20.
Immersion corrosion tests of TiC0.8, TiC, TiC–20 vol% SiC, TiC–40 vol% SiC and SiC have been performed in molten FLiNaK salt at 800 °C for 25–200 h under argon cover gas. All of these five samples showed small mass loss and relatively good corrosion resistance in molten FLiNaK salt. The corrosion patterns of TiC0.8, TiC, TiC–20 vol% SiC and TiC–40 vol% SiC were inter-granular corrosion, which were attributed to the depletion of Ti along the grain boundaries. SiC exhibited a general corrosion process in which a carbon-rich layer formed on the surface, resulting from the depletion of Si. The carbon-rich layer protected SiC against further corrosion, hence lowering the corrosion rate. The corrosion results of TiC–20% SiC and TiC–40% SiC revealed the corrosion resistance of TiC could be improved by adding SiC. And the contribution of SiC to better corrosion resistance has been elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号