首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper we propose a branch-and-cut algorithm for solving an integrated production planning and scheduling problem in a parallel machine environment. The planning problem consists of assigning each job to a week over the planning horizon, whereas in the scheduling problem those jobs assigned to a given week have to be scheduled in a parallel machine environment such that all jobs are finished within the week. We solve this problem in two ways: (1) as a monolithic mathematical program and (2) using a hierarchical decomposition approach in which only the planning decisions are modeled explicitly, and the existence of a feasible schedule for each week is verified by using cutting planes. The two approaches are compared with extensive computational testing.  相似文献   

2.
Nowadays, scheduling of production cannot be done in isolation from scheduling of transportation since a coordinated solution to the integrated problem may improve the performance of the whole supply chain. In this paper, because of the widely used of rail transportation in supply chain, we develop the integrated scheduling of production and rail transportation. The problem is to determine both production schedule and rail transportation allocation of orders to optimize customer service at minimum total cost. In addition, we utilize some procedures and heuristics to encode the model in order to address it by two capable metaheuristics: Genetic algorithm (GA), and recently developed one, Keshtel algorithm (KA). Latter is firstly used for a mathematical model in supply chain literature. Besides, Taguchi experimental design method is utilized to set and estimate the proper values of the algorithms’ parameters to improve their performance. For the purpose of performance evaluation of the proposed algorithms, various problem sizes are employed and the computational results of the algorithms are compared with each other. Finally, we investigate the impacts of the rise in the problem size on the performance of our algorithms.  相似文献   

3.
A hot strip mill (HSM) produces hot rolled products from steel slabs, and is one of the most important production lines in a steel plant. The aim of HSM scheduling is to construct a rolling sequence that optimizes a set of given criteria under constraints. Due to the complexity in modeling the production process and optimizing the rolling sequence, the HSM scheduling is a challenging task for hot rolling production schedulers. This paper first introduces the HSM production process and requirements, and then reviews previous research on the modeling and optimization of the HSM scheduling problem. According to the practical requirements of hot rolling production, a mathematical model is formulated to describe two important scheduling sub-tasks: (1) selecting a subset of manufacturing orders and (2) generating an optimal rolling sequence from the selected manufacturing orders. Further, hybrid evolutionary algorithms with integration of genetic algorithm (GA) and extremal optimization (EO) are proposed to solve the HSM scheduling problem. Computational results on industrial data show that the proposed HSM scheduling solution can be applied in practice to provide satisfactory performance.  相似文献   

4.
Traditionally, process planning and scheduling were performed sequentially, where scheduling was implemented after process plans had been generated. Considering their complementarity, it is necessary to integrate these two functions more tightly to improve the performance of a manufacturing system greatly. In this paper, a mathematical model of integrated process planning and scheduling has been formulated. And, an evolutionary algorithm-based approach has been developed to facilitate the integration and optimization of these two functions. To improve the optimized performance of the approach, efficient genetic representation and operator schemes have been developed. To verify the feasibility and performance of the proposed approach, experimental studies have been conducted and comparisons have been made between this approach and some previous works. The experimental results show that the integrated process planning and scheduling is necessary and the proposed approach has achieved significant improvement.  相似文献   

5.
This paper considers the integrated FMS (flexible manufacturing system) scheduling problem (IFSP) consisting of loading, routing, and sequencing subproblems that are interrelated to each other. In scheduling FMS, the decisions for the subproblems should be appropriately made to improve resource utilization. It is also important to fully exploit the potential of the inherent flexibility of FMS. In this paper, a symbiotic evolutionary algorithm, named asymmetric multileveled symbiotic evolutionary algorithm (AMSEA), is proposed to solve the IFSP. AMSEA imitates the natural process of symbiotic evolution and endosymbiotic evolution. Genetic representations and operators suitable for the subproblems are proposed. A neighborhood-based coevolutionary strategy is employed to maintain the population diversity. AMSEA has the strength to simultaneously solve subproblems for loading, routing, and sequencing and to easily handle a variety of FMS flexibilities. The extensive experiments are carried out to verify the performance of AMSEA, and the results are reported.  相似文献   

6.
This paper presents a novel, two-phase approach for optimal generation scheduling, taking into account the environmental issue of emission allowance trading in addition to the economic issue of operation cost. In the first phase, hourly-optimal scheduling is done to simultaneously minimize operation cost, emission, and transmission loss, while satisfying constraints such as power balance, spinning reserve and power generation limits. In the second phase, the minimum up/down time and ramp up/down rate constraints are considered, and a set of 24-h optimal schedules is obtained using the outputs of the first phase. Simulation results indicate effectiveness of the proposed approach.  相似文献   

7.
Distributed Scheduling (DS) problems have attracted attention by researchers in recent years. DS problems in multi-factory production are much more complicated than classical scheduling problems because they involve not only the scheduling problems in a single factory, but also the problems in the higher level, which is: how to allocate the jobs to suitable factories. It mainly focuses on solving two issues simultaneously: (i) allocation of jobs to suitable factories and (ii) determination of the corresponding production schedules in each factory. Its objective is to maximize system efficiency by finding an optimal plan for a better collaboration among various processes. However, in many papers, machine maintenance has usually been ignored during the production scheduling. In reality, every machine requires maintenance, which will directly influence the machine's availability, and consequently the planned production schedule. The objective of this paper is to propose a modified genetic algorithm approach to deal with those DS models with maintenance consideration, aiming to minimize the makespan of the jobs. Its optimization performance has been compared with other existing approaches to demonstrate its reliability. This paper also tests the influence of the relationship between the maintenance repairing time and the machine age to the performance of scheduling of maintenance during DS in the studied models.  相似文献   

8.
We introduce a heuristic that is based on a unique genetic algorithm (GA) to solve the resource-sharing and scheduling problem (RSSP). This problem was previously formulated as a continuous-time mixed integer linear programming model and was solved optimally using a branch-and-bound (B&B) algorithm. The RSSP considers the use of a set of resources for the production of several products. Producing each product requires a set of operations with precedence relationships among them. Each operation can be performed using alternative modes which define the subset of the resources needed, and an operation may share different resources simultaneously. The problem is to select a single mode for each operation and accordingly to schedule the resources, while minimizing the makespan time. The GA we propose is based on a new encoding schema that adopts the structure of a DNA in nature. In our experiments we compared the effectiveness and runtime of our GA versus a B&B algorithm and two truncated B&B algorithms that we developed on a set of 118 problem instances. The results demonstrate that the GA solved all the problems (10 runs each), and reaches optimality in 75% of the runs, had an average deviation of less than 1% from the optimal makespan, and a runtime that was much less sensitive to the size of the problem instance.  相似文献   

9.
This study presents a framework for solving the multi-period, multi-product and multi-resource production-scheduling (M3PS) problem. Practically, the main concern for an M3PS problem is how to satisfy two management policies: (1) each product is manufactured in a continuous manner so that once the product is on a production line, it will complete its production procedure without interruption, and (2) the number of the product's types is limited during one period. By defining the decision variables and taking into account the machine's capacity and the customers' demand, a mixed integer programming (MIP) Model is formulated. To solve this MIP problem, a two-phase approach is proposed. In phase 1, the search space of the MIP Model is transformed into a preliminary pattern by a heuristic mining algorithm so that a hyper assignment problem can be formed as a reference model to be solved. In phase 2, a stochastic global optimization procedure that incorporates a genetic algorithm with neighborhood search techniques is designed to obtain the optimal solution. A numerical experiment is presented with an illustration, and it shows that the proposed model is adequate to cope with complicate scheduling problems.  相似文献   

10.
Hybrid methods are promising tools in integer programming, as they combine the best features of different methods in a complementary fashion. This paper presents such a framework, integrating the notions of genetic algorithm, linear programming, and ordinal optimization in an effort to shorten computation times for large and/or difficult integer programming problems. Capitalizing on the central idea of ordinal optimization and on the learning capability of genetic algorithms to quickly generate good feasible solutions, and then using linear programming to solve the problem that results from fixing the integer part of the solution, one may be able to obtain solutions that are close to optimal. Indeed ordinal optimization guarantees the quality of the solutions found. Numerical testing on a real-life complex scheduling problem demonstrates the effectiveness and efficiency of this approach.  相似文献   

11.
A simulated annealing approach to integrated production scheduling   总被引:6,自引:1,他引:5  
This paper describes an approach to manufacturing planning that seeks to integrate both process planning and scheduling. We show that separating these two related tasks, as is the common practice, can impose constraints that substantially reduce the quality of the final schedule. These constraints arise from premature decisions regarding operation sequence and allocation of manufacturing resources. Having formulated an integrated process planning and scheduling problem, we describe a solution technique based on simulated annealing. We compare this approach with others reported in the literature, considering both their generality and performance. In particular, we perform a detailed empirical comparison between simulated annealing and the popular technique of dispatching rules. Our results, achieved with two distinct sets of example problems, show that simulated annealing can produce solutions of significantly higher quality than those achieved through a published dispatching rule approach.  相似文献   

12.
Performance of a manufacturing system depends significantly on the shop floor performance. Traditionally, shop floor operational policies concerning maintenance scheduling, quality control and production scheduling have been considered and optimized independently. However, these three aspects of operations planning do have an interaction effect on each other and hence need to be considered jointly for improving the system performance. In this paper, a model is developed for joint optimization of these three aspects in a manufacturing system. First, a model has been developed for integrating maintenance scheduling and process quality control policy decisions. It provided an optimal preventive maintenance interval and control chart parameters that minimize expected cost per unit time. Subsequently, the optimal preventive maintenance interval is integrated with the production schedule in order to determine the optimal batch sequence that will minimize penalty-cost incurred due to schedule delay. An example is presented to illustrate the proposed model. It also compares the system performance employing the proposed integrated approach with that obtained by considering maintenance, quality and production scheduling independently. Substantial economic benefits are seen in the joint optimization.  相似文献   

13.
Mathematical formulations for production planning are increasing complexity, in order to improve their realism. In short-term planning, the desirable level of detail is particularly high. Exact solvers fail to generate good quality solutions for those complex models on medium- and large-sized instances within feasible time. Motivated by a real-world case study in the pulp and paper industry, this paper provides an efficient solution method to tackle the short-term production planning and scheduling in an integrated mill. Decisions on the paper machine setup pattern and on the production rate of the pulp digester (which is constrained to a maximum variation) complicate the problem. The approach is built on top of a mixed integer programming (MIP) formulation derived from the multi-stage general lotsizing and scheduling problem. It combines a Variable Neighbourhood Search procedure which manages the setup-related variables, a specific heuristic to determine the digester's production speeds and an exact method to optimize the production and flow movement decisions. Different strategies are explored to speed-up the solution procedure and alternative variants of the algorithm are tested on instances based on real data from the case study. The algorithm is benchmarked against exact procedures.  相似文献   

14.
With the increasing computing power of modern processors, exact solution methods (solvers) for the optimization of scheduling problems become more and more important. Based on the mixed integer programming (MIP) formulation of a scheduling problem, it will be analyzed how powerful the present solvers of this problem class are and up to which complexity real scheduling problems are manageable. For this, initially some common benchmark problems are investigated to find out the boundaries for practical application. Then, the acquired results will be compared with the results of a conventional simulation-based optimization approach under comparable time restrictions. As a next step, the general advantages and disadvantages of both approaches were analyzed. As the result, a coupling of the discrete event simulation system and an MIP solver is presented. This coupling automatically generates an MIP-formulation for the present simulation model which can be solved externally by an MIP solver. After the external optimization process follows a backward transformation of the results into the simulation system. All features of the simulation system (like Gantt-Charts, etc.) could be used to check or to illustrate these results. To perform the coupling for a wide range of simulation models, it has to be defined which general constraints the model has to satisfy.  相似文献   

15.
The aim of this paper is to propose the Human Evolutionary Model (HEM) as a novel computational method for solving search and optimization problems with single or multiple objectives. HEM is an intelligent evolutionary optimization method that uses consensus knowledge from experts with the aim of inferring the most suitable parameters to achieve the evolution in an intelligent way. HEM is able to handle experts’ knowledge disagreements by the use of a novel concept called Mediative Fuzzy Logic (MFL). The effectiveness of this computational method is demonstrated through several experiments that were performed using classical test functions as well as composite test functions. We are comparing our results against the results obtained with the Genetic Algorithm of the Matlab’s Toolbox, Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), Particle Swarm Optimizer (PSO), Cooperative PSO (CPSO), G3 model with PCX crossover (G3-PCX), Differential Evolution (DE), and Comprehensive Learning PSO (CLPSO). The results obtained using HEM outperforms the results obtained using the abovementioned optimization methods.  相似文献   

16.
Supply chain network (SCN) design is to provide an optimal platform for efficient and effective supply chain management. It is an important and strategic operations management problem in supply chain management, and usually involves multiple and conflicting objectives such as cost, service level, resource utilization, etc. This paper proposes a new solution procedure based on genetic algorithms to find the set of Pareto-optimal solutions for multi-objective SCN design problem. To deal with multi-objective and enable the decision maker for evaluating a greater number of alternative solutions, two different weight approaches are implemented in the proposed solution procedure. An experimental study using actual data from a company, which is a producer of plastic products in Turkey, is carried out into two stages. While the effects of weight approaches on the performance of proposed solution procedure are investigated in the first stage, the proposed solution procedure and simulated annealing are compared according to quality of Pareto-optimal solutions in the second stage.  相似文献   

17.
In automated electroplating lines, computer-controlled hoists are used to transfer parts from a processing resource to another one. Products are mounted into carriers and immersed sequentially in a series of tanks following a given sequence.  相似文献   

18.
The Bass model is a very successful parametric approach to forecast the diffusion process of new products. In recent years, applications of the Bass model have been extended to other operational research fields such as managing customer demands, controlling inventory levels, optimizing advertisement strategies, and so forth. This study attempts to establish an application for optimizing manufacturers’ production plans in a three-stage supply chain under the Bass model’s effects on the market. The supply chain structure considered in this research is similar to other common supply chains comprised of three stages, namely retailer, distributor and manufacturer. The retailer stage has to handle customer demands following the Bass diffusion process. Market parameters and essential information are assumed to be available and ready for access. Each stage is expected to determine its inventory policy rationally. That is, each stage will attempt to maximize its own profits. These decisions will back-propagate their effects to upper stages. This study adopts a dynamic programming approach to determine the inventory policies of each stage so as to optimize manufacturers’ production plans.  相似文献   

19.
20.
The scheduling systems in industries are required to construct schedule considering many kind of elements. The Advanced Planning and Scheduling (APS) is an approach for combined problems. To realize APS system, it is important to integrate data structure and scheduling algorithm using these data. In this paper, we propose integrated data structure based on Bill of Manufacturing with information technology of XML family and new Multistage Operation-based Genetic Algorithm for scheduling subsystem. The results of numerical experiment validate effectiveness of the proposal methods. Received: June 2005/Accepted: December 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号