首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 411 毫秒
1.
针对现有算法存在因视网膜血管尺寸微小和对比度低等造成细小血管分割缺失以及因病理区域造成血管过分割等问题,提出一种基于U型网络多尺度注意力细化视网膜分割算法。在编码和解码阶段使用改进的密集卷积模块充分提取血管的特征信息,提升特征的利用率。将不同尺度的编码层特征提取的结果拼接后,通过跳跃连接经双向注意力机制将特征增强后传递到解码层。在解码处引入空间细化模块进一步提取微小血管的空间信息,减少背景伪影,细化血管形态。该算法在公开数据集DRIVE和STARE上进行验证,其在评估指标准确率分别为0.964 9和0.966 3,灵敏度分别为0.842 2和0.805 0,特异性分别为0.982 2和0.988 0,AUC分别为0.986 7和0.989 5。  相似文献   

2.
眼底视网膜血管的检测与分析对许多眼科疾病的诊断具有重要意义.为了更精确、健全地提取视网膜血管的特征信息,提出一种融合多标签损失与双注意力的U型网络模型.首先在编码部分通过空间金字塔池化提供多尺度输入,在U型网络内部融入双注意残差块提升网络对特征信息的提取能力;其次,在网络底部嵌入特征相似模块以捕获特征之间的远程依赖关系,为了有效地抑制眼底图像中的噪声影响和捕获血管多尺度信息,在跳连部分分别引入双路径注意门机制与稠密的空洞空间金字塔池化模块;最后,在解码部分设置侧输出层生成与层级对应的局部预测图像,并配合多标签Dice损失函数进行训练.在DRIVE,STARE和CHASE_DB1数据集上进行实验,灵敏度分别为80.54%, 83.97%和82.40%,受试者曲线下的面积(AUC)分别为98.07%, 98.50%和98.36%.  相似文献   

3.
蒋芸  谭宁 《自动化学报》2021,47(1):136-147
视网膜血管的分割帮助医生对眼底疾病进行诊断有着重要的意义.但现有方法对视网膜血管的分割存在着各种问题, 例如对血管分割不足, 抗噪声干扰能力弱, 对病灶敏感等.针对现有血管分割方法的缺陷, 本文提出使用条件深度卷积生成对抗网络的方法对视网膜血管进行分割.我们主要对生成器的网络结构进行了改进,在卷积层引入残差模块进行差值学习使得网络结构对输出的改变变得敏感, 从而更好地对生成器的权重进行调整.为了降低参数数目和计算, 在使用大卷积核之前使用小卷积核对输入特征图的通道数进行减半处理.通过使用U型网络的思想将卷积层的输出与反卷积层的输出进行连接从而避免低级信息共享.通过在DRIVE和STARE数据集上对本文的方法进行了验证, 其分割准确率分别为96.08 %、97.71 %, 灵敏性分别达到了82.74 %、85.34 %, $F$度量分别达到了82.08 %和85.02 %, 灵敏度比R2U-Net的灵敏度分别高了4.82 %, 2.4 %.  相似文献   

4.
针对视网膜血管图像特征信息复杂程度高,现有算法存在微血管分割较低和病理信息误分割等问题,提出一种融合DenseNet和U-Net网络的血管分割模型。首先,通过限制对比度直方图均衡化和filter滤波对图像进行血管增强处理;其次利用局部自适应Gamma提升图像亮度信息并降低伪影的干扰;再次,由多尺度形态学滤波局部增强微血管特征信息;最后,利用U型密集连接模块进行分割。该算法在DRIVE数据集上实验,其平均准确率、灵敏度和特异性分别高达96.74%、81.50%和98.20%。  相似文献   

5.
曹飞道  赵怀慈 《控制与决策》2022,37(10):2505-2512
视网膜血管的结构和形态是计算机辅助系统诊断眼科疾病的重要依据.针对细小血管分割精度低的问题,提出一种融合残差密集模块与三端注意力模块的改进型U-Net算法.首先,将残差模块与密集模块相结合,充分利用每层的特征,提高网络提取细小血管特征的能力.在解码阶段引入三端注意力模块,利用空间注意力机制自适应地对特征进行空间校正,抑制背景噪声,突出目标区域.同时,通过多尺度特征融合的方式,利用高级语义特征改善网络对细小血管的分割效果.最后,为获取血管的多尺度特征, 在编码-解码网络结构中加入空洞卷积,在不增加参数的情况下增加感受野.基于DRIVE和STARE数据集的实验结果表明,所提出网络的灵敏度、特异性、准确率和AUC(area under curve)分别为81.26%/82.57%、98.20%/98.37%、96.70%/97.51%和98.12%/98.41%,优于现有先进算法.  相似文献   

6.
针对眼底视网膜血管分割中血管边界难以精确识别以及血管与背景对比度低而难以分割的问题,提出一种编码器-解码器结构的算法.为了提高算法在血管边界的分割能力,在编码部分采用全局卷积网络(GCN)和边界细化(BR)替换传统的卷积层;在跳跃连接部分引入改进的位置注意模块(PA)和通道注意模块(CA),目的是增加血管与背景之间的对...  相似文献   

7.
麻文静  王雪津  邢树礼  毛国君 《软件》2024,(1):21-24+37
眼底视网膜血管分割在多种类型眼科疾病的评估和诊断中起着重要作用。由于眼底图像中血管的拓扑结构复杂多变,现有算法通常存在分割结果中血管特征不连续以及血管边缘分割准确度不高的问题。针对上述问题,本文提出一种用于视网膜血管分割的多尺度全局注意力U型神经网络MSGA-UNet。该网络一方面通过全局特征注意力模块从编码器中较为容易地获得图像的全局表征信息,解决眼底视网膜血管分割中特征不连续的问题;另一方面利用多尺度空洞卷积模块,利用不同膨胀率的空洞卷积扩大感受野并获取图像的多尺度局部特征信息,从而提升血管边缘信息的提取能力。经过在DRIVE、STARE和CHASEDB1数据集上的实验,MSGA-UNet的平均交并比分别为74.06%、78.22%和79.62%;类别平均像素准确率分别为80.39%、84.60%和85.53%;精确度分别为96.32%,96.42%和97.23%;综合分割性能优于其他模型。  相似文献   

8.
张志昂  廖光忠 《计算机应用》2023,(10):3275-3281
针对传统视网膜血管分割算法存在血管分割精度低和病灶区域误分割等缺点,提出一种基于U-Net的多尺度特征增强视网膜血管分割算法(MFEU-Net)。首先,为解决梯度消失问题,设计一种改进的特征信息增强残差模块(FIE-RM)替代U-Net的卷积块;其次,为扩大感受野并提高对血管信息特征的抽取能力,在U-Net的底部引入多尺度密集空洞卷积模块;最后,为减少编解码过程中的信息损失,在U-Net的跳跃连接处构建多尺度通道增强模块。在DRIVE(Digital Retinal Images for Vessel Extraction)和CHASE_DB1数据集上的实验结果表明,与在视网膜血管分割方面表现次优的算法CS-Net(Channel and Spatial attention Network)相比,MFEU-Net的F1分数分别提高了0.35和1.55个百分点,曲线下面积(AUC)分别提高了0.34和1.50个百分点,这验证了MFEU-Net可以有效提高对视网膜血管分割的准确性和鲁棒性。  相似文献   

9.
针对现有算法对微血管分割精度低、难以区分病灶区域等问题,提出一种平衡多尺度注意力网络用于分割视网膜血管。在编码阶段引入多尺度特征提取模块,提升感受野减少血管细节特征损失;在编码和解码器间增加细节增强模块,突出目标区域提高信息敏感度;设计平衡尺度注意力模块调节细节和语义特征进行最终预测,减少伪影现象。实验结果表明,在DRIVE数据集上分割准确率为96.42%、灵敏度为83.17%、特异性为98.27%,优于现有其它算法。  相似文献   

10.
眼底图像中视网膜血管的健康状况对早期诊断各种眼科疾病及糖尿病心脑血管疾病等具有重要意义,然而视网膜血管结构细微、边界模糊且分布不规则,对其进行准确分割存在较大的难度.针对视网膜血管的这些特征,提出一种粗糙通道注意力残差U型网——粗糙通道注意力残差U型网络(RCARUNet).该网络首先引入粗糙集理论中上下近似概念设计粗糙神经元;接着基于粗糙神经元构建粗糙通道注意力模块,该模块在U-Net跳跃连接中采用全局最大池化和全局平均池化构造上下近似神经元,并进行神经元间的加权求和,对所建立的通道依赖关系进行合理的粗糙化,该依赖关系不仅包含全局信息,同时具有局部特性,可有效实现对所提取视网膜血管特征的准确重标定;然后添加残差连接,将特征直接从低层传递给高层,有助于解决网络性能退化问题,并有效提取更加丰富的视网膜血管特征;最后为了验证所提视网膜分割网络的有效性,在3个眼底视网膜公开图像数据集上与U-Net,Attention U-Net等传统网络模型进行对比实验,实验结果表明,所提视网膜分割网络在血管分割准确率、灵敏度和相似度等方面具有较高的优越性.  相似文献   

11.
针对视网膜细小血管分割精度低的问题,提出一种融合可伸缩级联模块、Transformer和自校准注意力的改进U-Net算法以提高细小血管分割精度。首先在编码阶段利用可伸缩级联模块,先行学习复杂多变的视网膜血管拓扑结构。然后在解码阶段提出一种自校准注意力机制,利用多尺度挤压激励模块,自适应对特征图通道和空间之间特征重要性进行校准,增强目标区域特征响应,抑制背景噪声。最后使用Transformer特征提取块,提高特征空间映射能力。基于DRIVE和CHASEDB1数据集的实验结果表明,所提算法准确率分别为96.49%和96.67%,灵敏度分别为83.75%和83.30%,特异性分别为98.28%和98.01%,AUC分别为0.987 1和0.987 2,所提算法的整体性能优于现有算法,各模块能够有效提高细小血管分割能力。  相似文献   

12.
针对视网膜血管形态结构复杂、特征信息多变的特点,提出一种结合残差网络和多尺度特征融合的U型视网膜分割算法。依次采用限制对比度直方图均衡化和局部自适应Gamma对原始视网膜图像进行预处理,得到血管增强、亮度提升的图像;将其输入至搭建的U型网络中进行端到端训练,该网络将U-Net原始卷积块替换为残差卷积块,实现对特征的复用,首尾的并行多分支结构和底部的金字塔池化结构扩大提取特征的感受野,在解码阶段加入带有注意力机制的跳跃连接改善视网膜血管的分割性能;通过sigmoid激活函数得到最终分割结果。在DRIVE数据集上进行实验,该算法准确率、敏感度和AUC分别为96.34%、84.61%和98.53%。  相似文献   

13.
视网膜血管分割得到的视网膜特征可以用于辅助糖尿病视网膜病变等眼病的诊断.近年来基于深度学习的血管自动分割算法以自动提取图像特征、精度高、速度快的这些优点吸引了大量研究.对近年基于深度学习的视网膜血管分割研究进行回顾,包括常见的眼底图像数据库、常用的数据增强、图像预处理、图像切片的操作.从网络架构的角度将近期的深度学习血管分割算法归类为级联结构神经网络、多路径神经网络、多尺度神经网络,并对网络进行介绍、对比、性能分析、复杂度分析、缺点分析.同时对于神经网络现实部署的研究也进行了介绍.结果表明,现有眼底图像数据库的数据量还较少,数据增强和图像预处理较多使用方法分别为水平竖直翻转和图像灰度化.从现有研究达到的性能上看,级联结构和多路径的神经网络较为适合视网膜血管的分割;从现有的复杂度来看,部分模型的推断时间可以达到毫秒级,计算消耗可以达到兆以下;从现有算法的缺点看,某个算法只能解决部分现有挑战.在移动设备硬件资源限制的情况下,轻量级的神经网络是一个值得探索的方向.  相似文献   

14.
针对甲状腺结节分割中存在的超声图像噪声干扰较大、结节尺寸多变和现有模型计算复杂度较高的问题,文中构建融合全局推理和多层感知机(Multi-layer Perception, MLP)架构的甲状腺结节分割模型.模型以轴向移位MLP模块为基础架构,以更小的计算复杂度实现不同空间位置特征之间的交互.在编码部分,融合端到端的全局推理单元,基于图卷积对图像全局信息进行交互,缓解图像噪声干扰较大的影响.在解码部分,引入金字塔特征层,完成多尺度特征交互,应对结节尺寸多变的问题.在DDIT数据集上的实验表明,文中模型性能较优,此外,文中模型还适用于乳腺结节分割、视网膜血管分割等其它医学图像分割任务.  相似文献   

15.
李天培  陈黎 《计算机科学》2020,47(5):166-171
眼底视网膜血管的分割提取对于糖尿病、视网膜病、青光眼等眼科疾病的诊断具有重要的意义。针对视网膜血管图像中的血管难以提取、数据量较少等问题,文中提出了一种结合注意力模块和编码-解码器结构的视网膜血管分割方法。首先对编码-解码器卷积神经网络的每个卷积层添加空间和通道注意力模块,加强模型对图像特征的空间信息和通道信息(如血管的大小、形态和连通性等特点)的利用,从而改善视网膜血管的分割效果。其中,空间注意力模块关注于血管的拓扑结构特性,而通道注意力模块关注于血管像素点的正确分类。此外,在训练过程中采用Dice损失函数解决了视网膜血管图像正负样本不均衡的问题。在3个公开的眼底图像数据库DRIVE,STARE和CHASE_DB1上进行了实验,实验数据表明,所提算法的准确率、灵敏度、特异性和AUC值均优于已有的视网膜血管分割方法,其AUC值分别为0.9889,0.9812和0.9831。实验证明,所提算法能够有效提取健康视网膜图像和病变视网膜图像中的血管网络,能够较好地分割细小血管。  相似文献   

16.
显著性实例分割是指分割出图像中最引人注目的实例对象。现有的显著性实例分割方法中存在 较小显著性实例不易检测分割,以及较大显著性实例分割精度不足等问题。针对这 2 个问题,提出了一种新的 显著性实例分割模型,即注意力残差多尺度特征增强网络(ARMFE)。模型 ARMFE 主要包括 2 个模块:注意力 残差网络模块和多尺度特征增强模块,注意力残差网络模块是在残差网络基础上引入注意力机制,分别从通道 和空间对特征进行选择增强;多尺度特征增强模块则是在特征金字塔基础上进一步增强尺度跨度较大的特征信 息融合。因此,ARMFE 模型通过注意力残差多尺度特征增强,充分利用多个尺度特征的互补信息,同时提升 较大显著性实例对象和较小显著性实例对象的分割效果。ARMFE 模型在显著性实例分割数据集 Salient Instance Saliency-1K (SIS-1K)上进行了实验,分割精度和速度都得到了提升,优于现有的显著性实例分割算法 MSRNet 和 S4Net。  相似文献   

17.
视网膜血管分割对于辅助医生诊断糖尿病性视网膜病变、黄斑萎缩、青光眼等眼科疾病具有重要意义.注意力机制被广泛用于U-Net及其变体中以提高血管分割模型的性能.为进一步提高视网膜血管的分割精度,挖掘视网膜图像中的高阶及全局上下文信息,本文提出基于多尺度高阶注意力机制的模型(multi-scale high-order attention network, MHA-Net).首先,多尺度高阶注意力(multi-scale high-order attention, MHA)模块从深层特征图中提取多尺度和全局特征计算初始化注意力图,从而改进模型处理医学图像分割时尺度不变的缺陷.接下来,该模块通过图的传递闭包构建注意力图,进而提取高阶的深层特征.通过将多尺度高阶注意力模块应用于编码器-解码器结构中,在彩色眼底图像数据集DRIVE上进行血管分割,实验结果表明,基于多尺度高阶注意力机制的视网膜血管分割方法有效地提高了分割的精度.  相似文献   

18.
使用模糊竞争Hopfield网络进行图像分割   总被引:4,自引:0,他引:4  
张星明  李凤森 《软件学报》2000,11(7):953-956
针对传统自组织竞争学习方法的不足,将模糊竞争学习引入竞争Hopfield网络中,由此设计了一个用于图像分割的模糊竞争Hopfield网络,通过将图像空间映射到灰度特征空间,实现灰度特征集的模糊聚类,进而实现图像分割.实验结果表明:对于二值分割,与Ostu方法相比,此算法在分割效果和对噪声的自适应能力方面具有明显的优点.对于多类分割,此算法比目前的FCM(fuzzy C mean)算法的处理速度要快.  相似文献   

19.
针对现有眼底视网膜血管分割算法普遍存在的微小血管细节丢失和病灶信息误判等问题,提出一种基于改进HRNet的血管分割算法.在预处理阶段,利用限制对比度自适应直方图均衡化和自适应的Gamma矫正提高血管与背景对比度;在编码阶段,将HRNet原始卷积替换为可变形卷积,提升卷积对复杂血管形态结构的适应能力;在多尺度特征融合阶段,引入空间金字塔池化和多尺度卷积,扩大感受野同时增强对目标局部特征关注度,改善血管伪影和细微信息丢失的问题.该算法在DRIVE数据库上仿真实验,其准确率、灵敏度和特异性分别为95.79%、80.33%和98.12%.  相似文献   

20.
为解决现有眼底图像分割方法对于细微血管存在低分割精度和低准确率的问题,提出一种基于编解码结构的U-Net改进网络模型。首先对数据进行预处理与扩充,提取绿色通道图像,并将其通过对比度限制直方图均衡化和伽马变换以增强对比度;其次训练集被输入到用于分割的神经网络中,在编码过程加入残差模块,用短跳跃连接将高、低特征信息融合,并利用空洞卷积增加感受野,解码模块加入注意力机制增加对细微血管分割精度;最后利用训练完成的分割模型进行预测得出视网膜血管分割结果。在DRIVE和CHASE-DB1眼底图像数据集上进行对比实验,模型算法的平均准确率、特异性和灵敏度分别达到96.77%和97.22%、98.74%和98.40%、80.93%和81.12%。实验结果表明该算法能够改善微细血管分割准确率及效率不高的问题,对视网膜血管可以进行更准确的分割。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号