首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of nucleation and growth of Na2O · 2CaO · 3SiO2 crystals in glasses with small deviations from the stoichiometric composition is studied. The stationary nucleation rate, induction period, and crystal growth rate as functions of the temperature and Na2O content in the glass are measured. It is found that relatively small variations in the glass composition significantly affect the crystal nucleation rate. The experimental data are analyzed within the framework of the classical nucleation theory. It is shown that an increase in the Na2O content in the glass brings about a decrease in the kinetic and thermodynamic barriers of nucleation. Deceased.  相似文献   

2.
Equilibrium phase relations in the system CaO·SiO2Na2O·SiO2Na2O·Al2O3·6SiO2 at 40–80 wt% Na2O·Al2O3·6SiO2 composition range have been experimentally studied at temperatures between 800 °C and 1200 °C. The liquidus temperature was determined with differential scanning calorimetry. The equilibrated samples were quenched with pressurized nitrogen, and examined with electron probe X-ray microanalysis and X-ray diffraction for identification of microstructure and phase relations. Five primary phase fields, CaO·SiO2, Na2O·SiO2, Na2O·2CaO·3SiO2, 2Na2O·CaO·3SiO2 and Na2O·Al2O3·6SiO2 were established. The ternary eutectic point of CaO·SiO2, Na2O·2CaO·3SiO2 and Na2O·Al2O3·6SiO2 was determined to be at 1030 °C with the composition of 29.0 wt% CaO·SiO2, 12.0 wt% Na2O·SiO2 and 59.0 wt% Na2O·Al2O3·6SiO2. Peritectic reaction of Na2O·2CaO·3SiO2, 2Na2O·CaO·3SiO2 and Na2O·Al2O3·6SiO2 occurred at 930 °C with the composition of 13.0 wt% CaO·SiO2, 29.0 wt% Na2O·SiO2 and 58.0 wt% Na2O·Al2O3·6SiO2. The liquidus surface projection of the ternary system has been constructed in the composition region important for the bottom ash application.  相似文献   

3.
4.
Attention is called to a stone of different composition than any heretofore recorded, and but recently possible of identification by petrographic-microscopic means through the work by Bowen and Morey on the system Na2SiO2-CaSiO3-SiO2. Various ways by which attempts were made to determine the composition of the crystals are described and a summary of the optical properties of these crystals from three sources is given. Probable places for the formation of these stones in the tank are also indicated.  相似文献   

5.
运用化学分析和SEM-EDXA等测试方法,研究了Na2O·CaO·2P2O5玻璃的分相形貌、分相组成与水解性关系。研究结果表明:玻璃分相形貌对玻璃的水解性有决定作用。分相有利于玻璃的生物活性.  相似文献   

6.
《Ceramics International》2016,42(5):5810-5822
The elastic properties and the density of ternary glass forming systems within the CaO–SiO2–Al2O3-system (CAS) were evaluated. Different glass compositions near the lowest eutectic (1170 °C) composition within the CaO–Al2O3–SiO2-system have been melted from pure raw materials. Their target compositions differed not more than 4 wt% for each component. Exact chemical compositions were measured by x-ray fluorescence. The density, and acoustic properties were determined and the Young׳s Moduli were derived herefrom. It was of special interest to obtain information on these properties and their dependencies upon small variations in the composition. The density values were between 2.600 and 2.667 g cm−3 and the packing density factors Vp of the oxides glasses using the ionic radii of Pauling were in the range from 0.559 to 0.571. The determined data were compared to different model calculations. Density model calculations show relative deviations between 2 and 6%. The values calculated from the model for Young׳s Modulus by Makishima and Mackenzie (1973) [1] were somewhat smaller than the measured ones. The correction by Rocherulle et al. (1989) [3] of the Makishima model showed better agreement with the measured values.  相似文献   

7.
By employing a nonconventional melting technique, namely, the aerodynamic levitation combined with CO2 laser melting, we have been able to synthesize a series of glasses in the binary system xCaO − (1 − x)Al2O3, (x = 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, and 0.80). Utilizing Raman spectroscopy, we have systematically followed the compositionally induced spectral changes in the low-frequency regime of the spectra, the so-called Boson Peak (BP) region, and unraveled interesting interrelationships between the low-energy vibrational modes and the elastic properties of calcium aluminate (CA) glasses. It was found that the BP frequency is not only systematically dependent on altering CaO content by exhibiting a minimum close to the eutectic composition. Interestingly, the above-mentioned compositional dependence of the BP, which is exhibited in the shift of the BP frequency versus the altering CaO content, is also strongly correlated with its elastic properties and seems to follow similar patterns for the binary CA glassy system. The above observations point toward the estimation that the eutectic point can serve as a strong indicator for various physicochemical phenomena taking place in the solid–liquid transition and thus provide new insights in an effort to deconvolute the ambiguous interrelationships occurring in the low vibrational frequency regime of these glasses.  相似文献   

8.
A study of the influence of the substitution of Ga2O3 for CaO, at constant O/Si ratio, on thermal properties and non-isothermal devitrification of 2.5CaO.2SiO2 is reported. Differential thermal analysis (DTA) and X-ray diffraction analysis were used. The X-ray diffraction pattern of the crystallized Ga2O3 base glass shows that the αCaO SiO2, that should be stable only above 1125°C, forms in the temperature range 900–1000°C. A new ternary crystalline phase, whose reflections are not reported in the JCPDS cards, was found to form during crystallization of the glass. The glass transformation temperature, Tg, and softening, Ts, temperature decrease as Ga2O3 is substituted for CaO. This is the result of the substitution of the network modifying cation Ca2+, of higher coordination number, by a network forming cation Ga3+ in fourfold coordination, in a composition range of relative insensitivity to changes of covalent cross-linking density. The crystal growth activation energy, Ec, decreases with substitution; this is the consequence of the decrease of the structural rigidity and of the shift of crystallization to a higher temperature range. Devitrification involves a mechanism of surface nucleation; surface nuclei behaving as bulk nuclei in samples that soften and sinter before devitryfing.  相似文献   

9.
The research and development of a new float glass with higher content of Al2O3 is essential for the commercial flat glass. The study on the workability and kinetic fragility of Na2O–CaO–Al2O3–SiO2 glass melts with different Al/Si ratios has been linked with the structure. The viscosities as a function of temperature for glass melts were derived on the basis of Vogel–Fulcher–Tamman (VFT) equation. Some characteristic temperatures and four characteristic temperature intervals of forming process in tin bath were estimated. The results showed that: adding 12 wt% Al2O3 substitute for SiO2, the melting point (Tm) increased about 35 K, entire temperature interval in tin bath narrowed down about 20 K, the shortening of workability was mainly reflected in the viscosity range of 105.75–1010 Pa s, the fragility index m increased by 15%. It reveals an inverse correlation between the workability and the fragility. The structural changes on the tetrahedron structural unit Qn (n=1, 2, 3, 4) were obtained by using Raman spectroscopy. Our analysis indicates that: the number of NBO reducing and a more polymerized structure with adding Al/Si ratios are responsible for the increase of viscosity; the tetrahedral distortion, a decrease of Q3/Q2 in the Qn species, is responsible for the increase of fragility.  相似文献   

10.
The specific features of the induced optical absorption spectra of glasses in the 45Na2O · xNb2O5 · (55 ? x)P2O5 system with Nb2O5 contents x = 5, 10, 20, 25, 30, and 35 mol % are investigated as functions of the irradiation dose and the heat treatment time. The spectra are decomposed into Gaussian components with the use of computer processing. It is revealed that the glass composition and the irradiation dose affect the number, type, and parameters of the bands associated with the PO 4 2? hole-type centers, electron-type color centers of the phosphate matrix, [Nb(5+)?] one-electron centers, and [Nb(5+)?-O-Nb(5+)?] two-electron centers. The inference is made that heat treatment at temperatures close to the glass transition point T g leads to the formation of groupings with a structure similar to structural motifs of NaNbO3 crystals. It is demonstrated that these groupings are responsible for the induced optical absorption in the near-IR spectral range.  相似文献   

11.
12.
The stability of δ-TeO2 phase was studied in binary TeO2–WO3, TeO2–CdO and ternary TeO2–WO3–CdO glasses. The samples were prepared by heating high purity powder mixtures of TeO2, WO3 and/or CdO to 800 °C in a platinum crucible with a closed lid, holding for 30 min and quenching in water bath. Differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were used to characterize the thermal, phase and microstructural properties of the δ-TeO2 phase. The addition of CdO into the tellurite glasses increased the stability range of the δ-TeO2 phase up to higher temperature values and expanded the compositional δ-TeO2 formation range. The formation of δ-TeO2 phase in the binary systems was observed for samples containing 5–10 mol% WO3 and 5–15 mol% CdO. However, for the ternary TeO2–WO3–CdO system the formation of δ-TeO2 phase was determined in a wider compositional range.  相似文献   

13.
Some historical glasses (lead-wood ash glasses, lead-crystal glasses…) are silicate glasses with high content of lead and potassium. This work presents the evaluation of the chemical stability of high-lead glasses in a high relative humidity atmosphere and as result of aqueous immersion. In both situations, the alteration mechanism begins with the lixiviation of alkali metal and lead ions, followed by the hydrolytic attack of the silica glass network. According to the results, the glasses with a higher content of lead show the fastest degradation due to their higher hygroscopicity. Environmental CO2 can be dissolved in the adsorbed water and favor the formation of intermediate degradation compounds.  相似文献   

14.
This study focuses on understanding the relationship between iron redox, composition, and heat-treatment atmosphere in nepheline-based model high-level nuclear waste glasses. Glasses in the Na2O–Al2O3–B2O3–Fe2O3–SiO2 system with varying Al2O3/Fe2O3 and Na2O/Fe2O3 ratios have been synthesized by melt-quench technique and studied for their crystallization behavior in different heating atmospheres—air, inert (N2), and reducing (96%N2–4%H2). The compositional dependence of iron redox chemistry in glasses and the impact of heating environment and crystallization on iron coordination in glass-ceramics have been investigated by Mössbauer spectroscopy and vibrating sample magnetometry. While iron coordination in glasses and glass-ceramics changed as a function of glass chemistry, the heating atmosphere during crystallization exhibited minimal effect on iron redox. The change in heating atmosphere did not affect the phase assemblage but did affect the microstructural evolution. While glass-ceramics produced as a result of heat treatment in air and N2 atmospheres developed a golden/brown colored iron-rich layer on their surface, those produced in a reducing atmosphere did not exhibit any such phenomenon. Furthermore, while this iron-rich layer was observed in glass-ceramics with varying Al2O3/Fe2O3 ratio, it was absent from glass-ceramics with varying Na2O/Fe2O3 ratio. An explanation of these results has been provided on the basis of kinetics of diffusion of oxygen and network modifiers in the glasses under different thermodynamic conditions. The plausible implications of the formation of iron-rich layer on the surface of glass-ceramics on the chemical durability of high-level nuclear waste glasses have been discussed.  相似文献   

15.
Cuspidine-based systems are used to control the crystallization in mold fluxes, which is enabled by CaF2 additions. However, excess CaF2 increases the corrosion of casting machines. Therefore, Na2O and K2O are added to the mold flux system to ensure an optimized crystallization and lubrication ability of the flux with the CaF2 content. This study investigated the effect of substituting Na2O with K2O on the volatilization of fluorine in a CaO–SiO2–CaF2-based slag system at high temperatures. The substitution of Na2O with K2O was performed at 5 mol% intervals. The volatilization was observed by thermogravimetric analysis under several isothermal conditions. The mass loss was measured at a heating rate of 5, 10, and 20 K/min. As the temperature increased, the volatilization of the mixed samples increased. The activation energy was calculated using the Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose methods. A kinetic analysis of the volatilization of fluorine was conducted using the calculated parameters and several known kinetic models. Consequently, the volatilization of the Na-rich sample was controlled by chemical reactions and that of the K-rich sample was identified to be controlled by a phase-boundary-controlled reaction. These results suggest that the addition of mixed alkali oxide promote the volatilization during the early stages of the reaction. From the post-experimental composition analyses, the remaining Na and K in the samples suggested a different mechanism for the Na and K volatilization. The volatilization of Na increased with time, whereas K volatilized easily during the beginning of the reaction.  相似文献   

16.
Polycrystalline material of a novel phase in the system CaO–Al2O3–Cr2O3 has been obtained by solid-state reactions. Chemical analysis indicated the composition CaAl2Cr2O7. Single-crystal growth of the new compound using borax as a mineralizer was successful. Diffraction experiments at ambient conditions on a crystal with composition CaAl2.13Cr1.87O7 yielded the following basic crystallographic data: space group P 3, a = 7.7690(5) Å, c = 7.6463(5) Å, V = 399.68(6) Å3, Z = 3. Structure determination and subsequent least-squares refinements resulted in a residual of R(|F|) = 2.3% for 1440 independent observed reflections and 113 parameters. To the best of our knowledge, the structure of CaAl2.13Cr1.87O7 or CaAl2Cr2O7 represents a new structure type. It belongs to the group of double layer structures where individual double layers contain octahedrally and tetrahedrally coordinated cation positions. Linkage between neighboring sheet packages is provided by additional calcium cations. Furthermore, thermal expansion has been studied in the interval between 29 and 790°C using in situ high-temperature single-crystal diffraction. No indications for a structural phase transition were observed. From the evolution of the lattice parameters the thermal expansion tensor has been obtained. A pronounced anisotropy is evident. The response of structural building units to variable temperature has been discussed.  相似文献   

17.
《Ceramics International》2022,48(9):12430-12441
Since the discovery of 1970s, bioactive glass has been a hot topic of research because of its excellent biological activity, which makes it a material that can repair and replace human bone tissue organs. In this work, the bioactive glasses in the system SiO2–P2O5–Na2O–CaO–F with different amounts of strontium oxide (SrO) and zinc oxide (ZnO) were prepared by the conventional melt quenching technology. The hydroxyapatite (HA) forming ability, ion release and antibacterial activity of these prepared glasses were investigated and the obtained results illustrated that SrO-doped samples had a better ability to form HA in modified simulated body fluid (MSBF) than ZnO-doped samples. As the immersion time of the sample in MSBF increased, the content of HA phase gradually increased. In the same immersion time, the formation ability of HA and the variation of SrO substitution amount showed a non-linear trend, which is mainly related to the influence of SrO content on the glass network structure. The results of ion concentration showed that the formation of HA was the result of the comprehensive action of various ions in the solution, especially the release rate of Si4+ ions, which had a direct impact on the formation ability of HA. The antibacterial test illustrated that the difference in antibacterial activity of bacteria solution at different sample concentrations may be related to the high pH environment and the osmotic effects caused by the non-physiological concentration of ions in the solution. The glass sample contained 4 wt% SrO showed the minimum bactericidal concentration at 64 mg/mL. The glass samples prepared in this experiment had good biological activity and antibacterial effect, making them suitable for using in dentistry and orthopedic applications, as well as providing a valuable composition reference for the preparation of bioactive glass with excellent comprehensive properties.  相似文献   

18.
《Ceramics International》2016,42(7):8247-8256
Combined FTIR spectroscopy and X-ray diffraction analysis have been employed to investigate the bone-bonding ability or bioactivity of some prepared borate glasses and their glass–ceramic derivatives from the two systems (Na2O–CaO–B2O3) and (NaF–CaF2–B2O3). The present study includes the mentioned FTIR spectral and X-ray analytical techniques before and after immersion of the glasses and glass–ceramics for 2 weeks in 0.025 M sodium phosphate (Na2HPO4) solution. Also, the work extends to evaluate the corrosion behavior for specified grains of the studied samples (0.3–0.6 mm) after immersion in phosphate solution for 2 weeks at 37 °C. The FTIR spectra of the two glass systems after immersion show some changes in the vibrational bands than before immersion. The generation of the characteristic peaks at about 580 and 680 cm−1 after immersion confirms the bone bonding ability by the formation of hydroxyapatite phase. The X-ray diffraction studies show the separation of (CaF2) which is known to be an efficient nucleator. Weight loss data show a difference in solubility in the sodium phosphate solution between fluoride and oxide glass systems due to the strong action of the leaching solution and ease of solubility of fluoride glasses than corresponding oxide glasses in this solution. SEM data indicate the formation of small rounded or nodular shape crystals which are characteristics for the formation of hydroxyapatite layer and complete agreement with X-ray data.  相似文献   

19.
The effect of Al2O3 and K2O content on structure, sintering and devitrification behaviour of glasses in the Li2O–SiO2 system along with the properties of the resultant glass–ceramics (GCs) was investigated. Glasses containing Al2O3 and K2O and featuring SiO2/Li2O molar ratios (3.13–4.88) far beyond that of lithium disilicate (Li2Si2O5) stoichiometry were produced by conventional melt-quenching technique along with a bicomponent glass with a composition 23Li2O–77SiO2 (mol.%) (L23S77). The GCs were produced through two different methods: (a) nucleation and crystallization of monolithic bulk glass, (b) sintering and crystallization of glass powder compacts.Scanning electron microscopy (SEM) examination of as cast non-annealed monolithic glasses revealed precipitation of nanosize droplet phase in glassy matrices suggesting the occurrence of phase separation in all investigated compositions. The extent of segregation, as judged from the mean droplet diameter and the packing density of droplet phase, decreased with increasing Al2O3 and K2O content in the glasses. The crystallization of glasses richer in Al2O3 and K2O was dominated by surface nucleation leading to crystallization of lithium metasilicate (Li2SiO3) within the temperature range of 550–900 °C. On the other hand, the glass with lowest amount of Al2O3 and K2O and glass L23S77 were prone to volume nucleation and crystallization, resulting in formation of Li2Si2O5 within the temperature interval of 650–800 °C.Sintering and crystallization behaviour of glass powders was followed by hot stage microscopy (HSM) and differential thermal analysis (DTA), respectively. GCs from composition L23S77 demonstrated high fragility along with low flexural strength and density. The addition of Al2O3 and K2O to Li2O–SiO2 system resulted in improved densification and mechanical strength.  相似文献   

20.
ZrO2 is an effective nucleation agent for low-expansion lithium–aluminum silicate (LAS) glass–ceramic (GC) with high Al2O3 content. However, the effect of ZrO2 is still not fully understood in LAS glasses with low contents of Al2O3 and P2O5. In this work, the effect of ZrO2 on the phase separation and crystallization of Li2O–Al2O3–SiO2–P2O5 glasses were investigated. The results revealed that ZrO2 significantly increased Tg and the crystallization temperature of Li2SiO3 and Li2Si2O5 crystals. Li3PO4 crystals precipitated preferentially in the glass containing 3.6-mol% ZrO2, wherein Zr was stable in the network and no precipitation of ZrO2 nanocrystals was observed. Moreover, the separation of phosphate-rich phases in the as-quenched glasses increased with the addition of ZrO2. The findings of the study revealed a dual role of ZrO2. First, ZrO2 acted as a glass network former rather than a nucleation agent, increasing glass viscosity and the nucleation barrier of Li2SiO3 through its strong network connectivity. Second, as Zr preferentially combined with non-bridging oxygen to form Si–O–Zr linkages, a sufficient amount of charge-balancing Li+ ions existed in the network, which promoted the separation of phosphate-rich phases. It indicated that the incorporation of ZrO2 contributes to the activation of the nucleation role of P2O5, thus contributing to the formation of nanocrystals and fine microstructure of GCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号