共查询到20条相似文献,搜索用时 15 毫秒
1.
Economic Load Dispatch (ELD) is an important and difficult optimization problem in power system planning. This article aims at addressing two practically important issues related to ELD optimization: (1) analyzing the ELD problem from the perspective of evolutionary optimization; (2) developing effective algorithms for ELD problems of large scale. The first issue is addressed by investigating the fitness landscape of ELD problems with the purpose of estimating the expected performance of different approaches. To address the second issue, a new algorithm named “Estimation of Distribution and Differential Evolution Cooperation” (ED-DE) is proposed, which is a serial hybrid of two effective evolutionary computation (EC) techniques: estimation of distribution and differential evolution. The advantages of ED-DE over the previous ELD optimization algorithms are experimentally testified on ELD problems with the number of generators scaling from 10 to 160. The best solution records of classical 13 and 40-generator ELD problems with valve points, and the best solution records of 10, 20, 40, 80 and 160-generator ELD problems with both valve points and multiple fuels are updated in this work. To further evaluate the efficiency and effectiveness of ED-DE, we also compare it with other state-of-the-art evolutionary algorithms (EAs) on typical function optimization tasks. 相似文献
2.
Leandro dos Santos Coelho Rodrigo Clemente Thom Souza Viviana Cocco Mariani 《Mathematics and computers in simulation》2009
Evolutionary algorithms (EAs) are general-purpose stochastic search methods that use the metaphor of evolution as the key element in the design and implementation of computer-based problems solving systems. During the past two decades, EAs have attracted much attention and wide applications in a variety of fields, especially for optimization and design. EAs offer a number of advantages: robust and reliable performance, global search capability, little or no information requirement, and others. Among various EAs, differential evolution (DE), which characterized by the different mutation operator and competition strategy from the other EAs, has shown great promise in many numerical benchmark problems and real-world optimization applications. The potentialities of DE are its simple structure, easy use, convergence speed and robustness. To improve the global optimization property of DE, in this paper, a DE approach based on measure of population's diversity and cultural algorithm technique using normative and situational knowledge sources is proposed as alternative method to solving the economic load dispatch problems of thermal generators. The traditional and cultural DE approaches are validated for two test systems consisting of 13 and 40 thermal generators whose nonsmooth fuel cost function takes into account the valve-point loading effects. Simulation results indicate that performance of the cultural DE present best results when compared with previous optimization approaches in solving economic load dispatch problems. 相似文献
3.
Krishna Teerth Chaturvedi Manjaree Pandit Laxmi Srivastava 《Applied Soft Computing》2008,8(4):1428-1438
At the central energy management center in a power system, the real time controls continuously track the load changes and endeavor to match the total power demand with total generation in such a manner that the operating cost is minimized while all the operating constraints are satisfied. However, due to the strict government regulations on environmental protection, operation at minimum cost is no longer the only criterion for dispatching electrical power. The idea behind the environmentally constrained economic dispatch formulation is to estimate the optimal generation schedule of generating units in such a manner that fuel cost and harmful emission levels are both simultaneously minimized for a given load demand. Conventional optimization techniques become very time consuming and computationally extensive for such complex optimization tasks. These methods are hence not suitable for on-line use. Neural networks and fuzzy systems can be trained to generate accurate relations among variables in complex non-linear dynamical environment, as both are model-free estimators. The existing synergy between these two fields has been exploited in this paper for solving the economic and environmental dispatch problem on-line. A multi-output modified neo-fuzzy neuron (NFN), capable of real time training is proposed for economic and environmental power generation allocation.This model is found to achieve accurate results and the training is observed to be faster than other popular neural networks. The proposed method has been tested on medium-sized sample power systems with three and six generating units and found to be suitable for on-line combined environmental economic dispatch (CEED). 相似文献
4.
In this paper, a new and efficient optimization technique based on hybridization of chemical reaction optimization (CRO) with differential evolution (DE) is developed and demonstrated to solve the ELD problem with thermal cost function having valve point loading effect together with and without multiple fuel options and with and without considering prohibited operating zone and ramp rate constraint. When valve-point effects, multi-fuel operations and the constraints of prohibited operating zone and ramp rate are taken into account, ELD problem become more complex than conventional ELD problem. To show the priority of the proposed algorithm, it is implemented on six different test systems for solving ELD problems. Comparative studies are carried out to examine the effectiveness of the proposed HCRO-DE approach with conventional DE, CRO and the other algorithms reported in the literature. The simulation results show that the proposed HCRO-DE method is capable of obtaining better quality solutions than DE, CRO and the other well popular optimization techniques. 相似文献
5.
Chaotic differential evolution methods for dynamic economic dispatch with valve-point effects 总被引:1,自引:0,他引:1
Youlin LuJianzhong Zhou Hui QinYing Wang Yongchuan Zhang 《Engineering Applications of Artificial Intelligence》2011,24(2):378-387
The dynamic economic dispatch (DED), with the consideration of valve-point effects, is a complicated non-linear constrained optimization problem with non-smooth and non-convex characteristics. In this paper, three chaotic differential evolution (CDE) methods are proposed based on the Tent equation to solve DED problem with valve-point effects. In the proposed methods, chaotic sequences are applied to obtain the dynamic parameter settings in DE. Meanwhile, a chaotic local search (CLS) operation for solving DED problem is designed to help DE avoiding premature convergence effectively. Finally, in order to handle the complicated constraints with efficiency, new heuristic constraints handling methods and feasibility based selection strategy are embedded into the proposed CDE methods. The feasibility and effectiveness of the proposed CDE methods are demonstrated for two test systems. The simulation results reveal that, compared with DE and those other methods reported in literatures recently, the proposed CDE methods are capable of obtaining better quality solutions with higher efficiency. 相似文献
6.
Differential evolution based optimal reactive power dispatch for real power loss minimization in power system is presented in this paper. The proposed methodology determines control variable settings such as generator terminal voltages, tap positions and the number of shunts to be switched, for real power loss minimization in the transmission system. The problem is formulated as a mixed integer nonlinear optimization problem. A generic penalty function method, which does not require any penalty coefficient, is employed for constraint handling. The formulation also checks for the feasibility of the optimal control variable setting from a voltage security point of view by using a voltage collapse proximity indicator. The algorithm is tested on standard IEEE 14, IEEE 30, and IEEE 118-Bus test systems. To show the effectiveness of proposed method the results are compared with Particle Swarm Optimization and a conventional optimization technique – Sequential Quadratic Programming. 相似文献
7.
This paper proposes a tournament-based harmony search (THS) algorithm for economic load dispatch (ELD) problem. The THS is an efficient modified version of the harmony search (HS) algorithm where the random selection process in the memory consideration operator is replaced by the tournament selection process to activate the natural selection of the survival-of-the-fittest principle and thus improve the convergence properties of HS. The performance THS is evaluated with ELD problem using five different test systems: 3-units generator system; two versions of 13-units generator system; 40-units generator system; and large-scaled 80-units generator system. The effect of tournament size (t) on the performance of THS is studied. A comparative evaluation between THS and other existing methods reported in the literature are carried out. The simulation results show that the THS algorithm is capable of achieving better quality solutions than many of the well-popular optimization methods. 相似文献
8.
主要利用差分进化算法来研究时间约束下的多出救点应急物资调度优化问题。针对传统差分进化算法搜索速度慢、易陷入局部最优解的缺点,提出一个并行协同差分进化算法,将该算法应用于时间约束下的多出救点应急物资调度优化,建立相应的数学模型,在此基础上设计相应的算法。实例验证表明,同遗传算法、标准差分进化算法相比,该算法在解决具有时间约束的多出救点应急物资调度优化问题方面具有较快的搜索速度和较好的寻优能力。 相似文献
9.
This paper addresses a hybrid solution methodology involving modified shuffled frog leaping algorithm (MSFLA) with genetic algorithm (GA) crossover for the economic load dispatch problem of generating units considering the valve-point effects. The MSFLA uses a more dynamic and less stochastic approach to problem solving than classical non-traditional algorithms, such as genetic algorithm, and evolutionary programming. The potentiality of MSFLA includes its simple structure, ease of use, convergence property, quality of solution, and robustness. In order to overcome the defects of shuffled frog leaping algorithm (SFLA), such as slow searching speed in the late evolution and getting trapped easily into local iteration, MSFLA with GA cross-over is put forward in this paper. MSFLA with GA cross-over produces better possibilities of getting the best result in much less global as well as local iteration as one has strong local search capability while the other is good at global search. This paper proposes a new approach for solving economic load dispatch problems with valve-point effect where the cost function of the generating units exhibits non-convex characteristics, as the valve-point effects are modeled and imposed as rectified sinusoid components. The combined methodology and its variants are validated for the following four test systems: IEEE standard 30 bus test system, a practical Eastern Indian power grid system of 203 buses, 264 lines, and 23 generators, and 13 and 40 thermal units systems whose incremental fuel cost function take into account the valve-point loading effects. The results are quite promising and effective compared with several benchmark methods. 相似文献
10.
11.
Solving high-dimensional global optimization problems is a time-consuming task because of the high complexity of the problems. To reduce the computational time for high-dimensional problems, this paper presents a parallel differential evolution (DE) based on Graphics Processing Units (GPUs). The proposed approach is called GOjDE, which employs self-adapting control parameters and generalized opposition-based learning (GOBL). The adapting parameters strategy is helpful to avoid manually adjusting the control parameters, and GOBL is beneficial for improving the quality of candidate solutions. Simulation experiments are conducted on a set of recently proposed high-dimensional benchmark problems with dimensions of 100, 200, 500 and 1,000. Simulation results demonstrate that GjODE is better than, or at least comparable to, six other algorithms, and employing GPU can effectively reduce computational time. The obtained maximum speedup is up to 75. 相似文献
12.
Adaptive strategy selection in differential evolution for numerical optimization: An empirical study 总被引:1,自引:0,他引:1
Differential evolution (DE) is a versatile and efficient evolutionary algorithm for global numerical optimization, which has been widely used in different application fields. However, different strategies have been proposed for the generation of new solutions, and the selection of which of them should be applied is critical for the DE performance, besides being problem-dependent. In this paper, we present two DE variants with adaptive strategy selection: two different techniques, namely Probability Matching and Adaptive Pursuit, are employed in DE to autonomously select the most suitable strategy while solving the problem, according to their recent impact on the optimization process. For the measurement of this impact, four credit assignment methods are assessed, which update the known performance of each strategy in different ways, based on the relative fitness improvement achieved by its recent applications. The performance of the analyzed approaches is evaluated on 22 benchmark functions. Experimental results confirm that they are able to adaptively choose the most suitable strategy for a specific problem in an efficient way. Compared with other state-of-the-art DE variants, better results are obtained on most of the functions in terms of quality of the final solutions and convergence speed. 相似文献
13.
《Expert systems with applications》2014,41(16):7338-7349
This paper proposes a multi-agent type-2 fuzzy logic control (FLC) method optimized by differential evolution (DE) for multi-intersection traffic signal control. Type-2 fuzzy sets can deal with models’ uncertainties efficiently because of its three-dimensional membership functions, but selecting suitable parameters of membership functions and rule base is not easy. DE is adopted to decide the parameters in the type-2 fuzzy system, as it is easy to understand, simple to implement and possesses low space complexity. In order to avoid the computational complexity, the expert rule base and the parameters of membership functions (MF) are optimized by turns. An eleven-intersection traffic network is studied in which each intersection is governed by the proposed controller. A secondary layer controller is set in every intersection to select the proper phase sequence. Furthermore, the communication among the adjacent intersections is implemented using multi-agent system. Simulation experiments are designed to compare communicative type-2 FLC optimized by DE with type-1 FLC, fixed-time signal control, etc. Experimental results indicate that our proposed method can enhance the vehicular throughput rate and reduce delay, queue length and parking rate efficiently. 相似文献
14.
An improved bacterial foraging algorithm for combined static/dynamic environmental economic dispatch
Nicole Pandit Anshul Tripathi Shashikala Tapaswi Manjaree Pandit 《Applied Soft Computing》2012,12(11):3500-3513
Economic dispatch is carried out at the energy control center to find out the optimal output of thermal generating units such that power balance criterion is met, unit operating limits are satisfied and the fuel cost is minimized. With growing environmental awareness and strict government regulations throughout the world, it has become essential to optimize not only the total fuel cost but also the harmful emissions, both, under static as well as dynamic conditions. The static environment economic dispatch finds the optimal output of generating units for a fixed load demand at a given time, while the dynamic environmental economic dispatch schedules the output of online generators with changing power demands over a certain time period (normally one day) so as to minimize these two conflicting objectives, simultaneously. In this paper, the price penalty factor approach is employed for simultaneous minimization of cost and emission. The generator ramp rate constraints, non-convex and discontinuous nature of cost function and the large number of generators in practical power plants, make this problem very difficult to solve. Here, a fuzzy ranking approach is employed to identify the solution which offers the best compromise between cost and emission objectives. 相似文献
15.
K. VaisakhL.R. Srinivas 《Engineering Applications of Artificial Intelligence》2011,24(3):426-436
In this paper, an effective and reliable algorithm, termed as evolving ant direction differential evolution (EADDE) algorithm, for solving the optimal power flow problem with non-smooth and non-convex generator fuel cost characteristics is presented. In this method, suitable mutation operator for differential evolution (DE) is found by ant colony search. The genetic algorithm evolves the ant colony parameters and the Newton-Raphson method solves the power flow problem. The proposed algorithm has been examined on the standard IEEE 30-bus and IEEE 57-bus systems with three different objective functions. Different cases were considered to investigate the robustness of the proposed method in finding the global solution. The EADDE provides better results compared to classical DE and other methods recently reported in the literature as demonstrated by simulation results. 相似文献
16.
Environmental economic dispatch of fixed head of hydrothermal power systems is viewed as a mulitobjective optimization problem in this paper. The practical hydrothermal system possesses various constraints which make the problem of finding global optimum difficult. This paper develops an improved multiobjective estimation of distribution algorithm to solving the above problem. A local learning operation is added into the original regularity model-based multiobjective estimation of distribution algorithm (RM-MEDA) in the improved approach so as to improve the local search ability and enhance the convergence efficiency. Furthermore, a repair mechanism is employed to repair the searched infeasible solutions in order to be able to search in the feasible region. In the experiment, the results obtained by the proposed approach have been compared with those from other three MOEAs: NSGA-II, NNIA, and RM-MEDA. Results from some pervious reported methods have also been employed to compare with our method. In addition, the results demonstrate the superiority of this proposed method as a promising MOEA to solve this power system multiobjective optimization problem. 相似文献
17.
In this study, differential evolution algorithm (DE) is proposed to train a wavelet neural network (WNN). The resulting network is named as differential evolution trained wavelet neural network (DEWNN). The efficacy of DEWNN is tested on bankruptcy prediction datasets viz. US banks, Turkish banks and Spanish banks. Further, its efficacy is also tested on benchmark datasets such as Iris, Wine and Wisconsin Breast Cancer. Moreover, Garson’s algorithm for feature selection in multi layer perceptron is adapted in the case of DEWNN. The performance of DEWNN is compared with that of threshold accepting trained wavelet neural network (TAWNN) [Vinay Kumar, K., Ravi, V., Mahil Carr, & Raj Kiran, N. (2008). Software cost estimation using wavelet neural networks. Journal of Systems and Software] and the original wavelet neural network (WNN) in the case of all data sets without feature selection and also in the case of four data sets where feature selection was performed. The whole experimentation is conducted using 10-fold cross validation method. Results show that soft computing hybrids viz., DEWNN and TAWNN outperformed the original WNN in terms of accuracy and sensitivity across all problems. Furthermore, DEWNN outscored TAWNN in terms of accuracy and sensitivity across all problems except Turkish banks dataset. 相似文献
18.
Dexuan Zou Haikuan LiuLiqun Gao Steven Li 《Engineering Applications of Artificial Intelligence》2011,24(4):616-624
An improved differential evolution algorithm (IDE) is proposed to solve task assignment problem. The IDE is an improved version of differential evolution algorithm (DE), and it modifies two important parameters of DE algorithm: scale factor and crossover rate. Specially, scale factor is adaptively adjusted According to the objective function values of all candidate solutions, and crossover rate is dynamically adjusted with the increasement of iterations. The adaptive scale factor and dynamical crossover rate are combined to increase the diversity of candidate solutions, and to enhance the exploration capacity of solution space of the proposed algorithm. In addition, a usual penalty function method is adopted to trade-off the objective and the constraints. Experimental results demonstrate that the optimal solutions obtained by the IDE algorithm are all better than those obtained by the other two DE algorithms on solving some task assignment problems. 相似文献
19.
S. Sivananaithaperumal S. Miruna Joe Amali 《Engineering Applications of Artificial Intelligence》2011,24(6):1084-1093
This paper presents a constrained Self-adaptive Differential Evolution (SaDE) algorithm for the design of robust optimal fixed structure controllers with uncertainties and disturbance. Almost all real world optimization problems have constraints which should be satisfied along with the best optimal solution for the problem. In evolutionary algorithms (EAs) the presence of constraints reduces the feasible region and complicates the search process. Therefore, a suitable method to handle the constraints must also be executed. In the SaDE algorithm, four mutation strategies and the control parameter CR are self-adapted. Self-adaptive Penalty (SP) method is introduced into the SaDE algorithm for constraint handling. The performance of SaDE algorithm is demonstrated on the design of robust optimal fixed structure controller of three systems, namely the linearized magnetic levitation system, F-8 aircraft linearized model and a SISO plant. For the comparison purpose, reported results of constrained PSO algorithm and five DE algorithms with different strategies and parameter values are taken into account. Statistical performance in 20 independent runs is considered to compare the performance of algorithms. From the obtained results, it is observed that SaDE algorithm is able to self-adapt the mutation strategy and the crossover rate and hence performs better than the other variants of DE and the constrained PSO algorithm. Better performance of SaDE is achieved by sustained maintenance of diversity throughout the evolutionary process thus producing better individuals consistently. This also aids the algorithm to escape from local optima thereby avoiding premature convergence. 相似文献
20.
Solving engineering design and resources optimization via multiobjective evolutionary algorithms (MOEAs) has attracted much
attention in the last few years. In this paper, an efficient multiobjective differential evolution algorithm is presented
for engineering design. Our proposed approach adopts the orthogonal design method with quantization technique to generate
the initial archive and evolutionary population. An archive (or secondary population) is employed to keep the nondominated
solutions found and it is updated by a new relaxed form of Pareto dominance, called Pareto-adaptive ϵ-dominance (paϵ-dominance), at each generation. In addition, in order to guarantee to be the best performance produced, we propose a new
hybrid selection mechanism to allow the archive solutions to take part in the generating process. To handle the constraints,
a new constraint-handling method is employed, which does not need any parameters to be tuned for constraint handling. The
proposed approach is tested on seven benchmark constrained problems to illustrate the capabilities of the algorithm in handling
mathematically complex problems. Furthermore, four well-studied engineering design optimization problems are solved to illustrate
the efficiency and applicability of the algorithm for multiobjective design optimization. Compared with Nondominated Sorting
Genetic Algorithm II, one of the best MOEAs available at present, the results demonstrate that our approach is found to be
statistically competitive. Moreover, the proposed approach is very efficient and is capable of yielding a wide spread of solutions
with good coverage and convergence to true Pareto-optimal fronts. 相似文献