首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目前, 大多数的增强现实和自动驾驶应用不仅会使用到深度网络估计的深度信息, 还会使用到位姿网络估计的位姿信息. 将位姿网络和深度网络同时集成到嵌入式设备上, 会极大地消耗内存. 为解决这一问题, 提出一种深度网络和位姿网络共用特征提取器的方法, 使模型保持在一个轻量级的尺寸. 此外, 通过带有线性结构的深度可分离卷积轻量化深度网络, 使网络在不丢失过多细节信息前提下还可获得更少的参数量. 最后, 通过在KITTI数据集上的实验表明, 与同类算法相比, 该位姿网络和深度网络参数量只有的 35.33 MB. 同时, 恢复深度图的平均绝对误差也保持在0.129.  相似文献   

2.
基于运动恢复结构与视图合成的自监督范式,引入条件卷积与极化自注意力,提出新的单目深度与位姿估计模型。条件卷积对不同输入数据进行多组动态的卷积权重赋值,所有权重在经过加权整合后共享一次卷积操作,在不显著增加计算量的情况下实现模型容量的提升。图像信息完整性对深度估计任务的性能有极大影响,极化自注意力通过极化滤波使数据在通道或空间维度上保持高分辨率,防止图像的细粒度信息或结构信息丢失;同时压缩与通道或空间正交的维度,减小计算量,并通过非线性函数对压缩过程中损失的特征强度范围进行增强与动态映射。自注意力机制可以实现数据在各维度上的长距离建模。在KITTI数据集上进行实验,证明了所提出模型在自监督单目深度与位姿估计任务中有优异的性能表现。  相似文献   

3.
使用深度学习方法进行单目深度估计时,由于使用多级下采样会出现重建结果细节信息缺失、边缘轮廓模糊等问题.为此,提出一种基于高分辨率网络的自监督单目深度估计方法.首先,通过并行连接使得特征图在编码过程中始终保持高分辨率表示,以充分地保留细节信息;其次,为了提高编码器的学习能力,在编码部分引入注意力模块,对图像特征进行筛选和提炼;最后,针对深度估计的多义性问题,利用非相邻帧图像之间的一致性,设计了一种有效的损失函数,并使用可靠性掩膜来消除动点和遮挡点的干扰.在TensorFlow框架下采用KITTI和Cityscapes数据集进行实验,实验结果表明,与已有深度估计方法相比,该方法不仅能够保留预测深度的边缘信息,而且能够提高预测深度的准确性,可达到0.119的平均相对误差.  相似文献   

4.
在基于深度学习的单目图像深度估计方法中, 卷积神经网络在下采样过程中会出现图像深度信息丢失的情况, 导致物体边缘深度估计效果不佳. 提出一种多尺度特征融合的方法, 并采用自适应融合的策略, 根据特征数据动态调整不同尺度特征图的融合比例, 实现对多尺度特征信息的充分利用. 由于空洞空间金字塔池化(ASPP)在单目深度估计任务中, 会丢失图像中的像素点信息, 影响小物体的预测结果. 通过在对深层特征图使用ASPP时融合浅层特征图的丰富特征信息, 提高深度估计结果. 在NYU-DepthV2室内场景数据集的实验结果表明, 本文所提方法在物体边缘处有更准确的预测, 并且对小物体的预测有明显的提升, 均方根误差(RMSE)达到0.389, 准确率(δ <1.25)达到0.897, 验证了方法的有效性.  相似文献   

5.
单目图像深度估计是一个病态问题,究其原因在于单一图像中缺乏深度信息。随着深度学习技术的不断发展,深度神经网络在单目图像深度估计领域取得了一定的突破。现有的深度网络模型采用编码-解码结构,编码器往往采用全卷积的方式来获取特征图像,但提取的特征图像往往不能很好地反映图像原有的信息。因此,通过对图像编码器进行改进,对提取的不同尺度下的特征进行融合,使得特征图像能更好地反映原有的图像信息。并且在训练时,在左右一致性损失的基础上引入Wasserstein距离损失对模型进行约束。实验结果表明,模型在KITTI数据集上具有较好的表现,预测得到的深度图像具有较高的准确性。  相似文献   

6.
空洞空间金字塔池化(ASPP)在深度学习各种任务中均有应用,传统ASPP模块只考虑了提升卷积感受视野,但ASPP中的每次空洞卷积选取的像素点分散,会丢失大量像素点间的信息,而深度估计属于密集预测任务。针对ASPP模块这一弊端提出了一种动态密集的DSPP模块。该模块用一种动态卷积代替空洞卷积,结合ASPP的思想,采用不同大小的卷积尺寸,并结合通道注意力充分利用每一层的特征,解决了ASPP丢失信息的问题,与ASPP相比在大大减小模块参数量的前提下,提升了整体模型的准确率。在NYU Depth v2数据集上与主流算法相比深度图在均方根误差(RMSE)上降低了12.5%,到0.407,并且准确率(δ<1.25)提高了3.4%,达到0.875,验证了算法的有效性。  相似文献   

7.
叶星余  何元烈  汝少楠 《机器人》2021,43(2):203-213
提出了一种基于生成式对抗网络(GAN)和自注意力机制(self-attention mechanism)的单目视觉里程计方法,命名为SAGANVO(SAGAN visual odometry).该方法将生成式对抗网络学习框架应用于深度估计和视觉里程计任务中,通过GAN生成逼真的目标帧来准确求解出场景的深度图和6自由度位姿.与此同时,为了提高深度网络对场景细节、边缘轮廓的学习能力,将自注意力机制结合到网络模型中.最后,在公开数据集KITTI上展现了所提出的模型和方法的高质量结果,并与现有方法进行了对比,证明了SAGANVO在深度估计和位姿估计中的性能优于现有的主流方法.  相似文献   

8.
目的 无监督单目图像深度估计是3维重建领域的一个重要方向,在视觉导航和障碍物检测等领域具有广泛的应用价值。针对目前主流方法存在的局部可微性问题,提出了一种基于局部平面参数预测的方法。方法将深度估计问题转化为局部平面参数估计问题,使用局部平面参数预测模块代替多尺度估计中上采样及生成深度图的过程。在每个尺度的深度图预测中根据局部平面参数恢复至标准尺度,然后依据针孔相机模型得到标准尺度深度图,以避免使用双线性插值带来的局部可微性,从而有效规避陷入局部极小值,配合在网络跳层连接中引入的串联注意力机制,提升网络的特征提取能力。结果 在KITTI(Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago)自动驾驶数据集上进行了对比实验以及消融实验,与现存无监督方法和部分有监督方法进行对比,相比于最优数据,误差性指标降低了10% 20%,准确性指标提升了2%左右,同时,得到的稠密深度估计图具有清晰的边缘轮廓以及对反射区域更优的鲁棒性。结论 本文提出的基于局部平面参数预测的深度估计方法,充分利用卷积特征信息,避免了训练过程中陷入局部极小值,同时对网络添加几何约束,使测试指标及视觉效果更加优秀。  相似文献   

9.
在室内单目视觉导航任务中,场景的深度信息十分重要.但单目深度估计是一个不适定问题,精度较低.目前, 2D激光雷达在室内导航任务中应用广泛,且价格低廉.因此,本文提出一种融合2D激光雷达的室内单目深度估计算法来提高深度估计精度.本文在编解码结构上增加了2D激光雷达的特征提取,通过跳跃连接增加单目深度估计结果的细节信息,并提出一种运用通道注意力机制融合2D激光雷达特征和RGB图像特征的方法.本文在公开数据集NYUDv2上对算法进行验证,并针对本文算法的应用场景,制作了带有2D激光雷达数据的深度数据集.实验表明,本文提出的算法在公开数据集和自制数据集中均优于现有的单目深度估计.  相似文献   

10.
研究深度估计和语义分割的图像之间的互利关系,提出了一种联合语义分割的自监督单目深度估计方法 USegDepth.语义分割和深度估计任务通过共享编码器,实现语义引导.为了进一步提高编码器的跨多任务性能,设计了多任务特征提取模块,堆叠该模块构成共享编码器,解决有限感受野和缺乏跨通道交互导致的模型特征表示能力欠佳问题,进一步提升模型精度.同时,提出跨任务交互模块,通过双向的跨域信息交互细化特征表示,提升深度估计表现,特别是光度一致性监督有限的弱纹理区域和物体边界.通过在KITTI数据集上的训练和全面评估,实验结果显示所提的USegDepth模型方法的均方相对误差相比于SGDepth降低了0.176个百分点,在阈值为1.253的阈值精度达到了98.4%,证明了USegDepth在深度预测上具有较高的准确率.  相似文献   

11.
针对计算机视觉理解单目图像立体结构的问题,进行了单目图像深度估计算法的研究。提出了一种基于监督学习方法的室外单目图像深度估计算法,其采用语义标注信息指导深度估计过程,融合绝对深度特征、相对深度特征以及位置特征作为深度特征向量,采用LLOM学习深度特征向量与深度值之间的关系。实验结果显示,该算法对路面、草地以及建筑物类等深度渐进变化的图像块,可获得较满意的深度估计结果。本算法为单目图像深度估计开辟了一个全新的有效途径。  相似文献   

12.
人体姿态估计是当前的研究热点,可应用在动作识别、人机交互、医疗监护、运动分析、虚拟现实等方面。人体姿态估计主要从输入数据中获取人体的关键节点,比如肩膀、手肘、膝盖。鉴于现有深度学习算法在遮挡情况下存在识别不准确的情况,通过多尺度通道注意力机制对人体姿态估计的任务进行算法优化,核心思想是获取特征图的通道权重,聚合本地和全局特征的上下文信息。通过多个尺度自适应地融合通道维度的权重,实现对通道信息的加强,也就是选择性地增强重要特征和抑制无意义的特征。实验以SimpleBaseline为基准网络,插入多尺度通道注意力模块后,在MPII人体姿态数据集上进行训练和测试,达到88.402%的精度。实验在COCO数据集上进行训练和测试达到72.8的AP结果。  相似文献   

13.
针对传统方法在单目图像深度估计时精度低、速度慢等问题,提出一种全卷积编码-解码网络模型,该模型将稀疏的深度样本集和RGB图像作为输入,编码层由Resnet和一个卷积层组成,解码层由两个上采样层和一个双线性上采样层组成,上采样层采用上卷积模块和上投影模块交叉使用,有效降低了棋盘效应并保留了预测深度图像的边缘信息.同时,模...  相似文献   

14.
利用单目深度估计辅助飞行器超低空飞行的制导与控制是一个非常重要的发展方向。基于此在自监督学习框架下研究了一种基于单目图像的超低空景深估计方法:以立体图像对为训练集,采用左右一致性原则,有效提高网络准确率,并通过多尺度统一,改善了深度图中的空洞问题。在KITTI数据集和自制的超低空样本集上的实验结果表明论文所提方法能有效应用于超低空场景下的深度估计。  相似文献   

15.
图像级标签的弱监督图像语义分割方法是目前比较热门的研究方向,类激活图生成方式是最为常用的解决该类问题的主要工作方法。由于类激活图的稀疏性,导致判别区域的准确性降低。针对上述问题,提出了一种改进的Transformer网络弱监督图像学习方法。首先,引入空间注意力交换层来扩大类激活图的覆盖范围;其次,进一步设计了一个注意力自适应模块,来指导模型增强弱区域的类响应;特别地,在类生成过程中,构建了一个自适应跨域来提高模型分类性能。该方法在Pascal VOC 2012 验证集和测试集上分别达到了73.5%和73.0%。实验结果表明,细化Transformer网络学习方法有助于提高弱监督图像的语义分割性能。  相似文献   

16.
为解决目前ViT模型无法改变输入补丁大小且输入补丁都是单一尺度信息的缺点,提出了一种基于Transformer的图像分类网络MultiFormer。MultiFormer通过AWS(attention with scale)模块,将每阶段不同尺度输入小补丁嵌入为具有丰富语义信息的大补丁;通过GLA-P(global-local attention with patch)模块交替捕获局部和全局注意力,在嵌入时同时保留了细粒度和粗粒度特征。设计了MultiFormer-tiny、-small和-base三种不同变体的MultiFormer模型网络,在ImageNet图像分类实验中top-1精度分别达到81.1%、82.2%和83.2%,后两个模型对比同体量的卷积神经网络ResNet-50和ResNet-101提升了3.1%和3.4%;对比同样基于Transformer分类模型ViT,MultiFormer-base在参数和计算量远小于ViT-Base/16模型且无须大量数据预训练前提下提升2.1%。  相似文献   

17.
深度学习单目深度估计研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
单目深度估计是从单幅图像中获取场景深度信息的重要技术,在智能汽车和机器人定位等领域应用广泛,具有重要的研究价值。随着深度学习技术的发展,涌现出许多基于深度学习的单目深度估计研究,单目深度估计性能也取得了很大进展。本文按照单目深度估计模型采用的训练数据的类型,从3个方面综述了近年来基于深度学习的单目深度估计方法:基于单图像训练的模型、基于多图像训练的模型和基于辅助信息优化训练的单目深度估计模型。同时,本文在综述了单目深度估计研究常用数据集和性能指标基础上,对经典的单目深度估计模型进行了性能比较分析。以单幅图像作为训练数据的模型具有网络结构简单的特点,但泛化性能较差。采用多图像训练的深度估计网络有更强的泛化性,但网络的参数量大、网络收敛速度慢、训练耗时长。引入辅助信息的深度估计网络的深度估计精度得到了进一步提升,但辅助信息的引入会造成网络结构复杂、收敛速度慢等问题。单目深度估计研究还存在许多的难题和挑战。利用多图像输入中包含的潜在信息和特定领域的约束信息,来提高单目深度估计的性能,逐渐成为了单目深度估计研究的趋势。  相似文献   

18.
场景的深度估计问题是计算机视觉领域中的经典问题之一,也是3维重建和图像合成等应用中的一个重要环节。基于深度学习的单目深度估计技术高速发展,各种网络结构相继提出。本文对基于深度学习的单目深度估计技术最新进展进行了综述,回顾了基于监督学习和基于无监督学习方法的发展历程。重点关注单目深度估计的优化思路及其在深度学习网络结构中的表现,将监督学习方法分为多尺度特征融合的方法、结合条件随机场(conditional random field,CRF)的方法、基于序数关系的方法、结合多元图像信息的方法和其他方法等5类;将无监督学习方法分为基于立体视觉的方法、基于运动恢复结构(structure from motion,SfM)的方法、结合对抗性网络的方法、基于序数关系的方法和结合不确定性的方法等5类。此外,还介绍了单目深度估计任务中常用的数据集和评价指标,并对目前基于深度学习的单目深度估计技术在精确度、泛化性、应用场景和无监督网络中不确定性研究等方面的现状和面临的挑战进行了讨论,为相关领域的研究人员提供一个比较全面的参考。  相似文献   

19.
目的 将高光谱图像和多光谱图像进行融合,可以获得具有高空间分辨率和高光谱分辨率的光谱图像,提升光谱图像的质量。现有的基于深度学习的融合方法虽然表现良好,但缺乏对多源图像特征中光谱和空间长距离依赖关系的联合探索。为有效利用图像的光谱相关性和空间相似性,提出一种联合自注意力的Transformer网络来实现多光谱和高光谱图像融合超分辨。方法 首先利用联合自注意力模块,通过光谱注意力机制提取高光谱图像的光谱相关性特征,通过空间注意力机制提取多光谱图像的空间相似性特征,将获得的联合相似性特征用于指导高光谱图像和多光谱图像的融合;随后,将得到的融合特征输入到基于滑动窗口的残差Transformer深度网络中,探索融合特征的长距离依赖信息,学习深度先验融合知识;最后,特征通过卷积层映射为高空间分辨率的高光谱图像。结果 在CAVE和Harvard光谱数据集上分别进行了不同采样倍率下的实验,实验结果表明,与对比方法相比,本文方法从定量指标和视觉效果上,都取得了更好的效果。本文方法相较于性能第二的方法EDBIN (enhanced deep blind iterative network),在CAVE数据集上峰值信噪比提高了0.5 dB,在Harvard数据集上峰值信噪比提高了0.6 dB。结论 本文方法能够更好地融合光谱信息和空间信息,显著提升高光谱融合超分图像的质量。  相似文献   

20.
王亚群  戴华林  王丽  李国燕 《计算机工程》2021,47(11):262-267,291
为解决目前单目图像深度估计方法存在的精度低、网络结构复杂等问题,提出一种密集卷积网络结构,该网络采用端到端的编码器和解码器结构。编码器引入密集卷积网络DenseNet,将前面每一层的输出作为本层的输入,在加强特征重用和前向传播的同时减少参数量和网络计算量,从而避免梯度消失问题发生。解码器结构采用带有空洞卷积的上投影模块和双线性插值模块,以更好地表达由编码器所提取的图像特征,最终得到与输入图像相对应的估计深度图。在NYU Depth V2室内场景深度数据集上进行训练、验证和测试,结果表明,该密集卷积网络结构在δ<1.25时准确率达到0.851,均方根误差低至0.482。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号