首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NiAl/10-mol%-ZrO2(3Y) composites of almost full density have been fabricated via spark plasma sintering (SPS) for 10 min at 1300°C and 30 MPa. The former intermetallic compound, which contains a trace amount of Al2O3, has been prepared via self-propagating high-temperature synthesis. The composite microstructures are such that tetragonal ZrO2 (∼0.2 μm) and Al2O3 (∼0.5 μm) particles are located at the grain boundaries of the NiAl (∼46 μm) matrix. Improved mechanical properties are obtained: the fracture toughness and bending strength are 8.8 MPa·m1/2 and 1045 MPa, respectively, and high strength (>800 MPa) can be retained up to 800°C.  相似文献   

2.
Three calcium α-SiAlON microstructures—namely, fine-grained, bimodal, and large elongated—were developed using powders of the same composition and then characterized. The evolution of grain size and morphology was determined to be a process of nucleation and growth that could be controlled with a two-step sintering technique. The extent of texture was identified in the as-hot-pressed materials as a function of sintering conditions. Samples with different microstructures exhibited different hardness and fracture toughness. The true hardness was derived from the intrinsic relation between applied loads and indent sizes. The effect of microstructure on hardness and fracture toughness was analyzed.  相似文献   

3.
Gel-derived oxycarbide glasses have atomic network structures similar to that of vitreous silica glass but with carbon-rich regions consisting of CSi4 tetrahedra and C–Si–O bonds finely dispersed in the glass. Therefore, oxycarbide glasses exhibit the so-called anomalous hardness behavior, similar to silica-rich glasses, with a substantial densification–strain component beneath the indenter. However, the role of carbon is twofold: on the one hand, the covalently bonded carbon atoms slightly affect the behavior, similar to the way network modifiers affect the behavior of silicate glasses, and favor a normal indentation behavior; and on the other hand, the free carbon, forming turbostratic graphite domains, provides easy crack initiation sites and low-energy fracture paths. Almost concentric shear steps and microcracks, which follow the turbostratic graphite domains, are observed after indentation. The ultimate coalescence of the microcracks produces Hertzian-type cone cracks.  相似文献   

4.
The fracture strength of silicon carbide (SiC) plate deposits produced by chemical vapor deposition (CVD) was determined from room temperature to 1500°C using a standard 4-point flexural test method (ASTM C1161). CVD SiC materials produced by two different manufacturers are shown to have only slightly different flexural strength values, which appear to result from differences in microstructure. Although CVD deposition of SiC results in a textured grain structure, the flexural strength was shown to be independent of the CVD growth direction. The orientation of machining marks was shown to have the most significant influence on flexural strength, as expected. The fracture strength of tubular forms of SiC produced by CVD deposition directly onto a mandrel was comparable to flexural bars machined from a plate deposit. The tubular (O-ring) specimens were much smaller in volume than the flexural bars, and higher strength values are predicted based on Weibull statistical theory for the O-ring specimens. Differences in microstructure between the plate deposits and deposits made on a mandrel result in different flaw distributions and comparable strength values for the flexural bar and O-ring specimens. These results indicate that compression testing of O-rings provides a more accurate strength measurement for tubular product forms of SiC due to more representative flaw distributions.  相似文献   

5.
Geopolymers are porous, amorphous, alkali-aluminosilicate hydrate materials formed at room temperature via a solution process. Geopolymer based on metakaolin had a relatively homogeneous microstructure that offered consistent behavior but suffered from dehydration cracking and large densification shrinkages when heated. It was found that by reinforcing a metakaolin geopolymer of composition (K2O·Al2O3·4SiO2·11H2O) with 50 µm diameter alumina platelets, dehydration cracking could be prevented, and shrinkage could be reduced by an order of magnitude. Samples were reinforced with 30, 50, and 70 wt% of alumina platelets. Although the properties of the 30 and 50 wt% conditions were better than those of unreinforced geopolymer, those samples still showed warping, cracking, and strength losses on heating. The 70 wt% samples did not warp or crack when heated to temperatures of up to 1500°C. The room-temperature 4-point flexural strength of these samples remained at around 20 MPa regardless of heat treatments. The in situ measured flexural strength increased to almost 40 MPa at 600°C, and remained higher than 20 MPa until 1200°C. Samples subjected to propane-torch thermal shock heating and subsequent quenching did not crack or fragment. Dilatometry, X-ray diffraction, and scanning electron microscopy were used for additional characterization. Given these properties, this material showed promise as a castable refractory.  相似文献   

6.
ABSTRACT

Fracture mechanics-based techniques have become very popular in the failure prediction of adhesive joints. The most commonly used is cohesive zone modeling (CZM). For both conventional fracture mechanics and CZM, the most important parameters are the tensile and shear critical strain energy release rates (GIC and GIIC, respectively). The most common tests to estimate GIC are the Double-Cantilever Beam (DCB) and the Tapered Double-Cantilever Beam (TDCB) tests. The main objective of this work is to compare the DCB and TDCB tests to obtain the GIC of adhesive joints. Three adhesives with varying ductilities were used to verify their influence on the precision of the typical methods of data reduction. For both tests, methods that do not need the measurement of crack length (a) were tested. A CZM analysis was considered to reproduce the experimental load–displacement (P-δ) curves and obtain the tensile CZM laws of each tested adhesive, to test the suitability of the data reduction methods, and to study the effect of the CZM parameters on the outcome of the simulations. The CZM models accurately reproduced the experimental tests and confirmed that the data reduction methods for the TDCB test tend to underestimate GIC for ductile adhesives.  相似文献   

7.
Polycarbonates (PCs) are commonly used as a blend and a composite to achieve pecuniary advantages and dimensional stability. While the toughness of a homogeneous PC matrix has been extensively investigated, examination for the toughness of heterogeneous blend systems such as PC/polypropylene (PP) blends has been limited. Furthermore, recent interest in highly flowable PCs (low-molecular-weight PCs with low ductility) has surfaced due to the large and geometrically complex plastic parts. Herein, the toughness for PC/PP blends and PC/PP/talc composites in a ductile and a brittle PC matrix was explored by using various toughness measurements such as notched Izod impact strength, falling dart impact, boss quasi-static energy/impact energy, and tensile toughness tests. In a ductile PC matrix [melt flow index (MFI) = 8], the incorporation of PP gradually reduced the toughness. On the other hand, the toughness was improved by 450% at 2 wt % PP in a brittle PC matrix (MFI = 19). Similarly, in the talc-induced brittle PC matrix, the toughness was enhanced at the PP loading from 2 to 10 wt %. The density of PC/PP blends was gradually reduced from 1.19 to 1.10 g cm−3 with increasing PP concentration from 0 to 20 wt %. Degradation, density, thermal behaviors, and morphology were also investigated. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47110.  相似文献   

8.
Due to droplet‐based assembly, microstructure anisotropy is expected in atmospheric plasma‐sprayed coatings (APS), with lamellar separations and interfaces having critical effects on properties. Quantitative determination of these anisotropic properties is difficult due to geometric test constraints. This has been overcome in the literature through a variety of indirect, local, or modeled evaluation, however direct measurement on like‐dimensioned coatings is not available. In this work, 25‐mm thick ceramic coating variants, deposited at two different feed rates, were obtained from industry and macroscopic mechanical and thermal properties were evaluated in both in‐plane and out‐of‐plane orientations using identical specimen geometries. As expected, and confirming select past work, coating anisotropy has a direct influence on measured properties. The response of each property is microstructure‐dependent, highlighting the specific interaction: for instance, the fracture toughness is 120% higher in the through‐thickness orientation versus in‐plane after thermal aging, while the thermal conductivity was 24% lower in the through‐thickness. The former benefits from the lamellar interfaces that provide obstacles to crack propagation while the latter sees these interfaces as efficient phonon scatters. The results provide insights for design through robust property measurements and into operational mechanisms in this class of highly defected ceramics.  相似文献   

9.
Well‐defined correlations exist between the maxima in mechanical loss factor and the local maxima in temperature‐ or loading‐speed‐dependent fracture toughness. The non‐linear viscoelastic fracture processes and small‐strain deformations are characterised by the same Arrhenius‐type activation enthalpies. The local increase in toughness is linearly correlated with the relaxation strength of molecular relaxation processes. Stable crack propagation can be understood as a three‐phase process resulting in steady‐state stable crack growth. The normalised steady‐state crack‐tip‐opening displacement is independent of matrix material, temperature and loading speed.

  相似文献   


10.
ABSTRACT

Adhesively bonded joints have been increasingly used in structural applications over mechanical joints. Cohesive Zone Modelling (CZM) is the most widespread technique to predict the strength of these joints, and it uses the tensile fracture toughness (GIC) and the shear fracture toughness (GIIC). Different fracture characterization methods are available for shear loadings, among which the End-Notched Flexure (ENF) is undoubtedly the most popular. The 4-Point End-Notched Flexure (4ENF) is also available. This work consists of a detailed comparison between the ENF and 4ENF tests for the experimental estimation of GIIC of bonded aluminium joints. Three adhesives were used: a strong and brittle (Araldite® AV138), a less strong but with intermediate ductility (Araldite® 2015) and a highly ductile (SikaForce®7752). Different data reduction methods were tested, and the comparison included the load-displacement (P-δ) curves, resistance curves (R-curves) and measured GIIC. It was found that the ENF test presents a simpler setup and has a higher availability of reliable data reduction methods, one of these not requiring measuring the crack length (a) during its growth. For the 4ENF test, only one test method proved to be accurate, and the test geometry revealed to be highly affected by friction effects.  相似文献   

11.
The prediction of the failure load of bonded joints is a major issue in order to increase the confidence in the design of such assemblies. The aim of this paper is to present a method to predict the strength of adhesive joints. The failure could be initiated if two criteria are fulfilled: (i) an energy criterion and (ii) a stress criterion. The computation of these two criteria is based on elastic calculations using a 2D finite element modelling and could thus be used in an industrial design office. The effects of different parameters are studied: material parameters (elastic properties of the adhesive, strength and toughness of the adhesive) and geometrical parameters (thickness of the adhesive, presence of a fillet, overlap length).Predictions are in good agreement with experimental results evidenced in literature.  相似文献   

12.
An assessment of innovative adhesive bonding process has been performed with regard to quality and cost. In this frame, the effect of two different atmospheric pressure plasma surface treatment conditions on the fracture toughness behaviour of adhesively bonded joints was experimentally investigated. Furthermore, the mechanical performance of a newly developed aerospace structural adhesive has been characterised experimentally in order to assess the quality of the bonded elements. To assess the feasibility of the new process, a complete cost-estimation analysis of the process has been carried out based on the activity-based costing modelling approach, thus serving to the estimation of the total cost/duration of the process. To this end, the newly developed process is assessed with regard to quality and cost. It could be shown that the new process offers tempting alternatives to the existing adhesive bonding and joining processes used in the aeronautic industry.  相似文献   

13.
Abstract

Composite systems of the crosslinked and soluble poly(2-hydroxyethyl methacrylate) (PHEMA) matrix with various contents of crosslinked PHEMA particles containing 0.4, 1.0 and 20.0 wt. percent ethylenedimethacrylate as the crosslinking agent were prepared. Stress relaxations at the elongation λ = 1.1, stress-strain curves, Poisson's ratios, the degree of swelling and ultimate characteristics of samples swollen in water at 25°C were measured. With increasing filler content the time effects in the systems and the stress-at-break σb, and strain-at-break, σ b , also increase; these results corroborate the viscoelastic concept of the ultimate behaviour. An agreement was found between the experimentally determined course of the initial modulus G 0 and that predicted by Van der Poel as a function of the volume fraction of filler νf only for those systems in which the content of the crosslinking agent in the filler is smaller than in the matrix; systems with a higher content of the crosslinking agent in the filler than in the matrix require νf? = 3νf to fit the theory. Water present during the formation of filled systems preferentially swells the filler particles and reduces the polymerfiller interaction, which has a negative effect on the modulus G0 and on σb and ?b.  相似文献   

14.
The morphology and material properties of dicyandiamide (DICY)‐cured epoxy resins modified with acrylic particles consisting of a PBA (polybutyl acrylate) core and a PMMA (polymethyl methacrylate) shell and epoxy resins modified with acrylic rubber (PBA) particles alone were studied. It was found that the epoxy system modified with core/shell acrylic particles showed higher fracture toughness, indicating that the modification had a larger effect on improving the material properties of the epoxy resin. A characteristic shown by the core/shell acrylic particles is that they swell along with the epoxy resin under exposure to heat and gel before the latter cures. In this process, the epoxy resin penetrates the surface of the shell layer and a bond is formed between the epoxy matrix and the core/shell acrylic particles. This suggests that the epoxy matrix around the core/shell acrylic particles has the effect of increasing the level of energy absorption due to plastic deformation of the matrix. This is thought to explain why the epoxy resin modified with core/shell acrylic particles showed higher fracture toughness. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2955–2962, 1999  相似文献   

15.
This paper develops a novel multi-scale thermal/mechanical analysis model which not only can efficiently measure the thermal shock response but also highly reflects the effects of diversiform micro-structures of porous ceramics. Knowledge of the temperature distribution and time-varied thermal stress intensity factors (SIF) is derived by finite element/finite difference method and the weight function method in the macro continuum model. The finite element analysis employs a micro-mechanical model in conjunction with the macro model for the purpose of relating the SIF to the thermal stress in the struts of the porous ceramics. The micro model around the crack tip was established by using Voronoi lattices to accurately explore the micro-architectural features of porous ceramics. Hot shock induced center crack and cold shock induced edge crack are both considered. Effects of relative density and pore size on the thermal shock resistance are investigated and the results are well coincident with the experimental tests. The influence of cell regularity and cross section shape of the cell struts is discussed and the corresponding explanations are provided. The importance of incorporating temperature-dependent material properties on the thermal shock resistance prediction is quantitatively represented. These multi-faceted models and results provide a significant guide to the design and selection of porous ceramics against the thermal shock fracture failure for the future thermal protection system of space shuttle.  相似文献   

16.
Failure and stress analyses were carried out for composite pipes adhesively joined with sleeves subjected to internal pressure. In the study, the composite pipes and sleeves were E glass fiber/epoxy with different fiber orientation angles. Circular pieces cut from four layered composite pipes with different orientation angle were used as sleeves. Composite pipes with different orientation angle were bonded using DP410 and DP490 type adhesives. The codes of a numerical model were generated via ANSYS software package for the numerical analyses, and the numerical results were verified using experimental results. The problems were analyzed by using a calculation method based on finite elements method (FEM). The finite element analyses (FEA) were carried out to predict the failure internal pressure. Radial, tangential, axial and shear stress values were obtained via numerical analyses for composite pipes and adhesive layers in the thickness direction. In addition, Von–Mises stress distributions that develop on the adhesive were obtained as well. The effects of orientation angle, sleeve length and adhesive type on strength of composite pipe and bonded zone were examined. The results showed that the adhesive type has higher effect on the strength of bonded composite pipes when compared with orientation angle and sleeve length. In addition, increase in sleeve length increased the failure internal pressure.  相似文献   

17.
18.
This publication introduces a new mathematical model to describe a definitive relationship between constant strain-rate, creep, and stress-relaxation analysis for viscoelastic polymeric compounds. This new concept is especially significant since it adequately describes all the important characteristics of both creep and stress relaxation in the same model. In particular, all three phases of creep (i.e., primary, secondary, and tertiary) can be described adequately using this model. This new model for polymeric materials also indicates that yielding for constant strain-rate measurements and the inception of tertiary creep appear to be directly related and may, in fact, be manifestations of the same phenomena. The initial buildup of stress followed by the drop off in stress as a function of time for stress relaxation is also adequately described. This new formulation approach also offers a reasonably simple process in which to shift from a constant strain-rate configuration to a creep calculation or stress-relaxation configuration without changing formulation considerations. Most importantly, this model can be used to make a transition from one of these stress-configuration modes to another without stress or strain discontinuities. It is hoped that this analysis approach will open new doors for the design of plastic products for both short-term and long-term applications. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 527–540, 2001  相似文献   

19.
An appropriate morphological and structure matrix configuration where lithium ions could insert and de-insert is essential for lithium-ion batteries (LiB). Tungsten oxides (WO3) are especially attractive materials for this aim. In this research, the effects of the morphology and composition of WO3 nanostructures on the charge/discharge behavior for Li-ion batteries are methodically examined. On the one hand, nanostructured WO3 thin film was effectively synthesized by an electrochemical procedure. Then, an annealing treatment at 600°C in air environment for 4 h was carried out. In the second electrode synthesized, a carbon layer was uniformly deposited on WO3 nanostructures to obtain a WO3/C electrode. Finally, WO3/WS2 electrodes were prepared by means of in situ sulfurization of WO3 one-step solid-state synthesis using tungsten trioxide (WO3) and thiourea as precursor material. By using X-ray photoelectron spectroscopy, X-ray diffraction analysis, transmission electron microscopy, Raman spectra, and field-emission scanning electron microscopy, the three electrodes have been morphologically characterized. Electrochemical properties were analyzed by cyclic voltammogram, galvanostatic charge/discharge cycling, and electrochemical impedance spectroscopy. Among all the synthesized samples, WO3/C nanostructures reveal the best performance as they exhibit the greatest discharge capacity and cycle performance (820 mA h g−1).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号