首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
为提高大坝变形预测精度,针对大坝变形监测序列的非线性、非平稳性等特点,提出一种基于具有自适应噪声的完整集成经验模态分解(CEEMDAN)-相空间重构(PSR)-核极限学习机(KELM)的大坝变形预测模型。首先利用CEEMDAN算法将大坝变形监测序列分解成为若干不同频率的子序列,然后对各序列进行相空间重构,依据重构的各个子序列分别建立相应的KELM预测模型,最后对各子序列预测结果进行叠加求和得到最终预测结果。通过实例对比分析表明,该模型在大坝变形预测中预测精度较高,对于大坝变形安全监测具有一定的实用价值。  相似文献   

2.
张亚杰  崔东文 《人民珠江》2022,(6):94-100+107
为提高径流预测精度,提出基于经验模态分解(EMD)和法务侦查(FBI)算法、极限学习机(ELM)相融合的径流预测方法。首先采用EMD将径流序列数据分解成多个更具规律的分量序列,基于自相关函数法(AFM)、虚假最邻近法(FNN)对每个分量序列进行相空间重构;其次利用FBI算法优化ELM输入层权值和隐含层偏值,建立EMD-FBI-ELM径流预测模型,并构建EMD-FBI-SVM、FBI-ELM、FBI-SVM作对比预测模型;最后通过云南省姑老河水文站年径流预测实例对EMD-FBI-ELM、EMD-FBI-SVM、FBI-ELM、FBI-SVM模型进行验证分析。结果表明:EMD-FBI-ELM模型对实例年径流预测的平均相对误差为3.97%,平均相对误差较EMD-FBI-SVM、FBI-ELM、FBI-SVM模型的预测结果分别降低了53.9%、81.7%、86.5%,具有较好的预测效果。EMD-FBI-ELM模型用于径流预测是可行的,模型及优化方法可为相关预测研究提供参考。  相似文献   

3.
针对水电站厂房结构振动安全监测问题,结合智能学习算法,提出了一种基于AVMD和BSA-KELM的水电站厂房结构振动响应预测方法,为实现厂房结构振动智能化监测提供了一种新的思路。首先采用AVMD方法将振动信号分解为多阶IMF分量;然后对各阶IMF分量分别建立KELM预测模型,模型参数采用BSA优化算法选取;最后通过信号重构得到结构预测振动时程曲线。将该方法应用于某实际水电站工程,以机组和水压脉动原型观测信号作为输入,以水电站厂房结构振动信号作为输出,建立了预测模型,预测信号与测试信号对比结果表明:测点预测结果决定系数均大于0.8,振动幅值均方根误差均小于0.3 μm、平均绝对误差均小于0.2 μm,证明该方法预测精度较高,预测效果良好。  相似文献   

4.
针对光伏发电功率随机波动性导致预测难度大这一问题,采用改进的经验模态分解(CEEMD)对原始光伏发电功率数据进行分解,得到不同尺度的模态分量;然后引入麻雀搜索算法(SSA)对支持向量机(SVM)进行优化,建立不同尺度模态分量的预测模型;最后将各预测值叠加得到最终的光伏发电功率预测值。仿真结果表明,所提CEEMD-SSA-SVM光伏发电功率预测方法在保证原始光伏发电功率序列经CEEMD处理后具有较小重构误差的前提下,极大地提高了预测精准度。  相似文献   

5.
文章针对当前洪水预测中存在的预测精确度低、可信度差和高延时等问题,结合经验模态分解(Empirical Mode Decomposition,EMD),长短时记忆神经网络(Long Short-term Memory Networks,LSTM),提出一种基于EMD的深度学习模型(EMD-LSTM).该模型首先利用极限...  相似文献   

6.
根据实际风电功率信号的波动性和非线性,提出了一种基于互补式集合经验模态分解(CEEMD)和樽海鞘群算法极限学习机(SSA-ELM)的短期风电功率预测模型.首先利用CEEMD将风电功率原始信号分解为一系列模态分量和剩余分量,以减小风电功率的非平稳性;其次采用樽海鞘群算法优化极限学习机对不同分量进行预测;最后将不同分量的预...  相似文献   

7.
8.
随着5G技术的发展,智慧水务成为建设智慧城市的重要一环。因此,建立一种能够精确预测城市用水量的预测算法尤为关键。基于5G智慧水务技术,以H市自来水公司2020年的数据为研究对象,在考虑温度、节假日、天气情况等影响因素的条件下,对LR、SVR、BPNN这3种算法进行评估并改进。结果表明,通过改进SVR、BPNN算法的主要参数,改进后算法的预测精度明显较改进前有进一步提高;LR、BPNN算法受测试集与温度影响较小,但SVR算法受温度影响较大,且高温或低温均会减小其预测精度,但通过增加测试集可以降低此类情况。建议在一般情况下,采用改进后LR、BPNN算法;而在测试比例较大时,可以采用SVR算法进行用水量的预测。  相似文献   

9.
基于遗传神经网络的城市用水量预测研究   总被引:6,自引:0,他引:6  
介绍了BP(误差反向传播算法)和GA(遗传算法)及GA-BP 3种神经网络,并以此分别对城市用水量进行预测.实验结果表明,基于GA-BP算法的神经网络方法应用于城市用水量的预测问题,能采用遗传学习算法优化BP神经网络模型的初始权重,即先利用遗传学习算法进行全局训练,再用BP算法进行精确训练,使网络收敛速度加快和避免局部极小.GA-BP神经网络在收敛速度和预测精度等方面均优于BP和GA网络,从而为未来短期城市用水量负荷的准确预测提供了新的思路与方法.  相似文献   

10.
对用水量季节性变化规律做深入分析,在平均趋势法、趋势比法、环比法的基础上将温斯特法用于用水量预测,并以供水企业实例进行验证,对几种方法的预测结果进行评价,提出了切合实际的用水量预测参数优化选择方式,构成了季节性水量预测完整的理论体系,更好地促进了对于用水量规律的研究,可以充分有效地指导供水企业进行生产运营。  相似文献   

11.
12.
廖兴灵    简文彬      樊秀峰      章德生   《水利与建筑工程学报》2023,(2):128-136
针对东南丘陵山地降雨型滑坡变形发展特征,现有滑坡预测模型应用存在局限,结合滑坡变形特点研究基于智能算法的滑坡预测模型。以福建安溪尧山滑坡为例,选取2019年9月至2022年6月滑坡监测数据进行研究,采用集对分析、灰关联法、麻雀搜索算法及深度极限学习机对滑坡位移进行预测,提出了一种考虑滑坡位移滞后时间基于深度学习的滑坡位移预测模型。结果表明:SSA-DELM模型的MAE、MAPE、RMSE相较于已有的BP神经网络、SVM模型均更小,同时模型结合了滑坡影响因子以及水位-位移滞后特征,具有明确的物理意义,位移预测效果较好且精度较高,可推广应用于类似的滑坡位移预测中。  相似文献   

13.
14.
基于主成分分析的四川省用水量预测   总被引:1,自引:0,他引:1  
分析了影响四川省生活用水、工业用水、农业用水的因素,利用主成份分析从中找出主要影响因素,用回归分析法对三方面的用水量进行建模预测,并提出了相关的建议。  相似文献   

15.
改进BP网络模型在年用水量预测中的应用   总被引:6,自引:0,他引:6  
考虑城市用水量受众多因素影响,具有系统稳定性和非线性的特点,利用人工神经网络理论建立了改进BP网络预测模型,通过实例证明了该模型是一种行之有效的用水量预测模型。  相似文献   

16.
重力坝的变形与环境量之间存在复杂的非线性关系、使变形预测模型的输入自变量具有高维性,在一定程度上影响预测模型的精度和泛化能力。因此,提出一种将主成分分析、布谷鸟搜索算法和核极限学习机网络相结合的变形预测模型。该模型通过主成分分析法对与变形相关的水位、温度、时效影响因子进行主成分信息提取,优化网络模型的变量输入,同时采用优化性能更好的布谷鸟搜索算法确定核极限学习机网络的核参数和正则化系数。利用某重力坝的实测资料,对坝体沿坝轴方向和上下游方向的变形位移进行预测,与多种模型预测结果进行对比,并采用不同量化指标进行评价。结果表明,所提模型在两个方向的变形预测中,确定性系数R2分别为0.943和0.931,均高于传统的神经网络和逐步回归模型;在不同测点的上下游方向变形预测中,预测的精度和模型的泛化能力均优于对比模型,从而验证了该模型的可行性和优势。  相似文献   

17.
针对城市日用水量非线性变化问题,为实现水资源的优化调度和合理利用,提出一种深度学习的水量预测方法,建立多因素长短时神经网络模型预测日用水量。该方法选取影响日用水量的因素作为输入特征,日用水量时间序列数据作为训练样本,利用数据挖掘,输出用水量预测值。结合杭州示范区实际案例,与传统的人工神经网络方法进行对比,结果表明,长短时神经网络的预测结果优于传统的人工神经网络,并且基于多因素长短时神经网络模型的预测结果优于单因素长短时神经网络模型,预测结果具有较强的精度和稳定性。  相似文献   

18.
19.
本文引用柯布——道格拉斯生产函数建立城市用水量预测模型,并以某市为背景作了实例计算,分析了城市居民消费水平、居住面积以及工业总产值的增长对该市2000年和2010年用水量的影响。  相似文献   

20.
马悠怡 《给水排水》2008,34(5):22-25
目前浙江省小城镇建设已进入迅速发展时期,然而在进行小城镇给水工程规划中存在盲目套用大中城市建设标准指标的现象,造成规划设计的不合理。主要针对浙江省小城镇用水量进行调查研究,确定综合生活用水量指标,分析各类用水量的预测方法,以此在进行给水工程规划时合理确定水量规模。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号