首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
卷积神经网络(Convolutional Neural Network,CNN)是目前主流视觉算法不可或缺的关键部分.为提高CNN模型推理速度,学界提出了众多异构加速方法以满足不同场景下的多元加速需求.但如何在资源与能耗受限的在轨卫星上稳定高效地加速CNN仍是极具挑战的课题.为此,本文通过软硬件协同设计,着力优化微指令编码、指令级并行和运算级并行3个加速器设计的关键部分,在星上常见的Xilinx VX690T FPGA芯片上设计实现了一种微指令序列调度数据流的CNN加速器.在软件层面,本文提出一种可扩展的微指令编码格式及相应的编译方法.通过卷积循环分块和算子融合策略实现图级别优化,生成加速器可执行的微指令序列.在硬件层面,本文设计实现了一个由微控制器与逻辑运算器组成的RTL级CNN加速器.微控制器通过粗粒度流水线实现各类指令的并行执行.逻辑运算器通过DSP48E1计算资源级联所构建的计算阵列实现卷积算子的细粒度并行运算.实验结果表明,加速器设计功耗10.68W,在加速YOLOV3Tiny算法时,峰值吞吐率(Runtime Max Throughput,RMT)达到378.63 GOP/...  相似文献   

2.
余成宇    李志远    毛文宇  鲁华祥       《智能系统学报》2020,15(2):323-333
针对卷积神经网络计算硬件化实现困难的问题,之前大部分卷积神经网络加速器的设计都集中于解决计算性能和带宽瓶颈,忽视了卷积神经网络稀疏性对加速器设计的重要意义,近来少量的能够利用稀疏性的卷积神经网络加速器设计也往往难以同时兼顾计算灵活度、并行效率和资源开销。本文首先比较了不同并行展开方式对利用稀疏性的影响,分析了利用稀疏性的不同方法,然后提出了一种能够利用激活稀疏性加速卷积神经网络计算的同时,相比于同领域其他设计,并行效率更高、额外资源开销更小的并行展开方法,最后完成了这种卷积神经网络加速器的设计并在FPGA上实现。研究结果表明:运行VGG-16网络,在ImageNet数据集下,该并行展开方法实现的稀疏卷积神经网络加速器和使用相同器件的稠密网络设计相比,卷积性能提升了108.8%,整体性能提升了164.6%,具有明显的性能优势。  相似文献   

3.
卷积神经网络的高计算复杂性阻碍其广泛用于实时和低功耗应用,现有软件实现方案难以满足其对运算性能与功耗的要求,传统面向FPGA的卷积神经网络构造方式具有流程复杂、周期较长和优化空间较小等问题。针对该问题,根据卷积神经网络计算模式的特点,提出一种面向云端FPGA的卷积神经网络加速器的设计及其调度机制。通过借鉴基于HLS技术、引入循环切割参数和对卷积层循环重排的设计,采用模块化方式构造网络,并进行参数拓展以进一步优化加速器处理过程;通过分析系统任务和资源的特性总结调度方案,且从控制流和数据流两方面对其进行优化设计。与其他已有工作相比,提出的设计提供了一种同时具有灵活性、低能耗、高能效和高性能的解决方案,并且探讨了加速器的高效通用调度方案。实验结果表明,该加速器可在有效提高运算整速度的同时减少功耗。  相似文献   

4.
为提升轻量级卷积神经网络在硬件平台的资源利用效率和推理速度,基于软硬件协同优化的思想,提出一种面向FPGA平台的轻量级卷积神经网络加速器,并针对网络结构的特性设计专门的硬件架构。与多级并行策略结合,设计一种统一的卷积层计算单元。为降低模型存储成本、提高加速器的吞吐量,提出一种基于可微阈值的选择性移位量化方案,使计算单元能够以硬件友好的形式执行计算。实验结果表明,在Arria 10 FPGA平台上部署的MobileNetV2加速器能够达到311 fps的推理速度,相比CPU版本实现了约9.3倍的加速比、GPU版本约3倍的加速比。在吞吐量方面,加速器能够实现98.62 GOPS。  相似文献   

5.
基于FPGA的二值卷积神经网络加速器研究大多是针对小尺度的图像输入,而实际应用主要以YOLO、VGG等大尺度的卷积神经网络作为骨干网络。通过从网络拓扑、流水线等层面对卷积神经网络硬件进行优化设计,从而解决逻辑资源以及性能瓶颈,实现输入尺度更大、网络层次更深的二值VGG神经网络加速器。采用CIFAR-10数据集对基于FPGA的VGG卷积神经网络加速器优化设计进行验证,实验结果表明系统实现了81%的识别准确率以及219.9 FPS的识别速度,验证了优化方法的有效性。  相似文献   

6.
针对基于嵌入式现场可编程门阵列(FPGA)平台的卷积神经网络加速器由于资源有限导致处理速度受限的问题,提出一种高性能卷积神经网络加速器.首先根据卷积神经网络和嵌入式FPGA平台的特点,设计软硬件协同操作架构;然后在存储资源和计算资源的限制下,分别提出二维直接内存存取分块和权衡数字信号处理单元与查找表使用的优化策略;最后针对人脸检测的应用,对SSD网络模型进行优化,采用软硬件流水结构,提高人脸检测系统的整体性能.在Xilinx ZC706开发板上实现此加速器,实验结果表明,该加速器可达到167.5 GOPS的平均性能和81.2帧/s的人脸检测速率,其平均性能和人脸检测速率是嵌入式GPU平台TX2的1.58倍.  相似文献   

7.
针对卷积神经网络FPGA加速器的资源分配与频率设置欠佳导致吞吐量受限的问题,提出一种面向吞吐量优化的自动化设计方法.首先将加速器的设计分为并行策略和频率设计,提出总体设计流程;然后将设计空间探索建模为线段分割问题,采用遗传算法及贪心算法求解;最后根据求解出的并行策略完成加速器的结构设计,根据求解出的预期运行频率对加速器的布局布线优化,使实际频率可以达到预期.对AlexNet及VGG-16模型在目标器件AlteraDE5a-Net的设计实验结果表明,文中方法能有效地提升资源使用效率并给出合理频率设置;相比于其他卷积神经网络FPGA加速器设计方法,该方法可提升AlexNet和VGG-16的吞吐量82.95%和66.19%.  相似文献   

8.
狄新凯  杨海钢 《计算机工程》2021,47(7):189-195,204
为消除卷积神经网络前向计算过程中因模型参数的稀疏性而出现的无效运算,基于现场可编程门阵列(FPGA)设计针对稀疏化神经网络模型的数据流及并行加速器。通过专用逻辑模块在输入通道方向上筛选出特征图矩阵和卷积滤波器矩阵中的非零点,将有效数据传递给由数字信号处理器组成的阵列做乘累加操作。在此基础上,对所有相关的中间结果经加法树获得最终输出特征图点,同时在特征图宽度、高度和输出通道方向上做粗颗粒度并行并寻找最佳的设计参数。在Xilinx器件上进行实验验证,结果表明,该设计实现VGG16卷积层综合性能达到678.2 GOPS,性能功耗比为69.45 GOPS/W,其性能与功耗指标较基于FPGA的稠密网络加速器和稀疏网络加速器有较大提升。  相似文献   

9.
为了提高中小规模设备卷积神经网络的推理速度,提出一种基于FPGA的卷积神经网络硬件加速器设计方案。针对模型中的卷积运算单元,该硬件加速器采用输入、输出二维循环展开和循环分块的方法,设计128个并行乘法器单元。模型的输入输出接口采用双缓存设计,通过乒乓操作,降低数据传输带来的时间延迟。同时,采用16位定点量化模型中权重参数,偏置参数和输入输出特征图的像素值。实验结果表明,与通用CPU酷睿i5-4440处理器相比,在COCO数据集上准确率几乎不变的情况下,计算性能提高5.77倍。在系统时钟频率为150 MHz时,硬件加速器的计算性能达到28.88 GOPS。  相似文献   

10.
注意力机制最近在深度神经网络中表现出优越的性能,但其计算包含复杂的数据流,内存开销和计算量大,需要定制加速器来优化推理计算。提出一种针对注意力机制计算的加速器结构。采用基于硬件控制的灵活分块方法,将模型中的巨大矩阵分成硬件亲和的计算块,使块矩阵的计算匹配加速器脉动阵列;提出基于双步softmax函数分解计算的层融合计算方法,有效减少了注意力模型计算对内存的访问。采用硬件描述语言HDL设计实现了细粒度计算调度的层融合注意力模型加速器结构。基于XILINX FPGA器件和HLS工具进行了性能评估。相同设置下,与CPU相比延迟加速了4.9倍,与GPU相比能效提升了1.24倍。  相似文献   

11.
《微型机与应用》2019,(11):96-101
近年来,卷积神经网络(CNN)在计算机视觉任务中得到了广泛的应用,可编程逻辑门阵列(FPGA)以其高性能、高能效、高灵活性等优点被广泛应用于CNN的加速。提出了一种基于FPGA的卷积神经网络加速器的设计与实现方法,以期在资源和功耗受限的平台中为CNN的计算提供加速。以VC707开发板为FPGA平台,设计了一种新的卷积神经网络Do Net,可以实现对Minist手写数据集的识别分类。测试结果表明,基于FPGA实现的Do Net对Minist数据集的识别准确率为95%,测试显示的识别时间为0. 545 ms,功耗为1. 95 W。  相似文献   

12.
近年来,现场可编程逻辑门阵列(FPGA)由于其灵活的可定制性和优秀的并行性,在硬件加速卷积神经网络(CNN)的研究和应用中吸引了广泛的关注.这些工作主要集中在两方面:对特定硬件加速模块的设计和优化以及对一类网络模型的通用加速硬件设计.前者一般是基于数据流的针对固定网络的设计,通过牺牲通用性来换取性能;后者一般是基于指令集能够加速一类模型的设计,通过牺牲性能来换取通用性.为了能够灵活地应对不同的需求,本文提出一种通过管理不同粒度算子来平衡性能与通用性的fGrain框架.该框架一方面利用底层基于数据流的算子设计来充分发挥硬件性能,另一方面通过虚拟化层来管理算子映射提供灵活性.实验表明,相比GPU推理延迟至多有25%的提升,而虚拟化性能损失仅在1.3%以下.  相似文献   

13.
随着卷积神经网络得到愈加广泛的应用,针对其复杂运算的定制硬件加速器得到越来越多的重视与研究。但是,目前定制硬件加速器多采用传统的卷积算法,并且缺乏对神经网络稀疏性的支持,从而丧失了进一步改进硬件,提升硬件性能的空间。重新设计一款卷积神经网络加速器,该加速器基于Winograd稀疏算法,该算法被证明有效降低了卷积神经网络的计算复杂性,并可以很好地适应稀疏神经网络。通过硬件实现该算法,本文的设计可以在减少硬件资源的同时,获得相当大的计算效率。实验表明,相比于传统算法,该加速器设计方案将运算速度提升了近4.15倍;从乘法器利用率的角度出发,相比现有的其他方案,该方案将利用率最多提高了近9倍。  相似文献   

14.
当前,高计算消耗的应用和服务逐渐从集中式云计算中心向网络边缘的嵌入式环境迁移,FPGA因其灵活性和高能效特性,使其在边缘计算的嵌入式系统中得到广泛的应用.传统的FPGA卷积神经网络构造方法存在设计周期长和优化空间小等缺点,无法有效探索硬件加速器的设计空间,在网络边缘的的嵌入式环境下尤为明显.针对该问题,提出一种面向边缘计算的嵌入式FPGA平台卷积神经网络通用的构建方法.通过设计卷积神经网络函数中的网络层间可复用的加速器核心,以少量硬件资源实现性能优化的卷积神经网络硬件;通过拓展设计、缓存优化及数据流优化等技术,实现HLS设计优化;利用该方法在嵌入式FPGA平台上构建相应卷积神经网络,实验结果表明:优化后的网络模型在与Xeon E5-1620 CPU和GTX Titan GPU相比时,在功耗与性能方面具有一定优势,适合应用于边缘计算环境中.  相似文献   

15.
随着以卷积神经网络为代表的深度学习得到广泛应用,神经网络模型中的计算量也急速增长,推动了深度学习加速器的发展。如何针对加速器硬件的体系结构特性进行加速和优化神经网络模型的性能成为研究热点。针对自主设计的多核向量加速器FT-M7004上的VGG网络模型推理和训练算法,分别提出了卷积、池化和全连接等核心算子的向量化映射方法,采用SIMD向量化、DMA双缓冲传输和权值共享等优化策略,充分发挥了向量加速器的体系结构优势,取得了较高的计算效率。实验结果表明,在FT-M7004平台上,卷积层推理和训练的平均计算效率分别达到了86.62%和69.63%;全连接层推理和训练的平均计算效率分别达到了93.17%和81.98%;VGG网络模型在FT-M7004上的推理计算效率超过GPU平台20%以上。  相似文献   

16.
《微型机与应用》2019,(3):77-81
为了解决卷积神经网络硬件实现阶段的资源限制问题,提出了基于FPGA动态重构的卷积神经网络加速器设计。首先,设计了卷积神经网络加速器的整体并行策略和VLSI架构,并针对卷积神经网络的功能模块进行了流水线设计。其次,对卷积神经网络加速器进行动态重构设计,建立动态重构区域及其模块功能划分;并选用BPI Flash存储配置文件,通过内部配置端口读取配置文件对动态重构区域进行动态配置。实验结果表明,针对Lenet-5手写体识别网络,基于动态重构设计的加速器与相应的静态设计相比,使用的Slice LUTs、Slice Registers与DSP资源分别减少44%、27. 8%与71%。与基于软件平台实现作对比,系统执行时间大幅度降低。但是由于内部配置端口的带宽限制,重构配置时间延长了整个卷积网络的执行时间。  相似文献   

17.
针对卷积神经网络(CNN)中卷积核的多样性导致加速器难以实现高效计算的问题,提出了一种可重构卷积神经网络加速器实现方法.加速器包括18个处理引擎(PE),每个PE包含9个乘累加单元,3个PE构建一个5×5卷积核实现卷积核重构,调度器通过控制每层所需的卷积核大小和通道数分配PE实现卷积处理.加速器支持常见的3×3,5×5...  相似文献   

18.
基于神经网络的方法计算量通常十分庞大,限制方法在嵌入式场景领域的应用.为了解决这一问题,文中提出基于异构现场可编程门阵列的卷积网络加速器.采用滑动窗并行加速卷积计算过程,可同时处理不同输入、输出通道的卷积过程.同时结合网络量化过程进行8 bit定点加速器设计,降低计算资源的使用.实验表明,文中定点加速器运算速度较快,功耗较小,算法性能损失较小.  相似文献   

19.
针对卷积神经网络在嵌入式系统需要耗费大量计算资源、计算复杂度高等问题,提出一种基于ZYNQ系列FPGA的加速方法。通过HLS工具对卷积神经网络加速器进行设计,提出相邻层位宽合并和权重参数重排序的策略实现数据传输的优化,利用卷积分解、并行展开充分发挥FPGA并行计算的优势。为验证卷积神经网络加速器的加速效果,将YOLO目标检测模型进行部署。实验结果表明,在PYNQ-Z2上达到了39.39GOP/s的计算性能,是intel i5-2400 CPU的3.4倍,是ARM-Cortex A9 CPU的147.5倍。在相同FPGA平台上与之前的工作相较也有更高的性能。  相似文献   

20.
为解决当前比特稀疏架构的性能瓶颈,提出高能效比特稀疏加速器设计.首先提出一种激活值编码方法和相应的电路来提高卷积神经网络的比特稀疏度,结合比特串行电路实时跳过激活值的零值比特来加速神经网络的计算;然后提出一种列共享同步机制,以解决比特稀疏架构的同步问题,并在较小的面积和功耗开销下大幅提高比特稀疏架构的计算性能.在SMIC40 nm工艺和1 GHz频率下,评估不同的比特稀疏架构在卷积神经网络上的能效.实验结果表明,与非稀疏加速器VAA和比特稀疏加速器LS-PRA相比,所提出的加速器AS-PRA分别提高了544%和179%的能效.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号