共查询到20条相似文献,搜索用时 8 毫秒
1.
卷积神经网络(convolutional neural network, CNN)模型量化可有效压缩模型尺寸并提升CNN计算效率.然而,CNN模型量化算法的加速器设计,通常面临算法各异、代码模块复用性差、数据交换效率低、资源利用不充分等问题.对此,提出一种面向量化CNN的嵌入式FPGA加速框架FAQ-CNN,从计算、通信和存储3方面进行联合优化,FAQ-CNN以软件工具的形式支持快速部署量化CNN模型.首先,设计面向量化算法的组件,将量化算法自身的运算操作和数值映射过程进行分离;综合运用算子融合、双缓冲和流水线等优化技术,提升CNN推理任务内部的并行执行效率.然后,提出分级编码与位宽无关编码规则和并行解码方法,支持低位宽数据的高效批量传输和并行计算.最后,建立资源配置优化模型并转为整数非线性规划问题,在求解时采用启发式剪枝策略缩小设计空间规模.实验结果表明,FAQ-CNN能够高效灵活地实现各类量化CNN加速器.在激活值和权值为16 b时,FAQ-CNN的加速器计算性能是Caffeine的1.4倍;在激活值和权值为8 b时,FAQ-CNN可获得高达1.23TOPS的优越性能. 相似文献
2.
为消除卷积神经网络前向计算过程中因模型参数的稀疏性而出现的无效运算,基于现场可编程门阵列(FPGA)设计针对稀疏化神经网络模型的数据流及并行加速器.通过专用逻辑模块在输入通道方向上筛选出特征图矩阵和卷积滤波器矩阵中的非零点,将有效数据传递给由数字信号处理器组成的阵列做乘累加操作.在此基础上,对所有相关的中间结果经加法树... 相似文献
3.
针对卷积神经网络(CNN)在资源受限的硬件设备上运行功耗高及运行慢的问题,提出一种基于现场可编程门阵列(FPGA)的CNN定点计算加速方法。首先提出一种定点化方法,并且每层卷积设计不同的尺度参数,使用相对散度确定位宽的长度,以减小CNN参数的存储空间,而且研究不同量化区间对CNN精度的影响;其次,设计参数复用方法及流水线计算方法来加速卷积计算。为验证CNN定点化后的加速效果,采用了人脸和船舶两个数据集进行验证。结果表明,相较于传统的浮点卷积计算,所提方法在保证CNN精度损失很小的前提下,当权值参数和输入特征图参数量化到7-bit时,在人脸识别CNN模型上的压缩后的权重参数文件大小约为原来的22%,卷积计算加速比为18.69,同时使FPGA中的乘加器的利用率达94.5%。实验结果表明了该方法可以提高卷积计算速度,并且能够高效利用FPGA硬件资源。 相似文献
4.
针对卷积神经网络(CNN)在资源受限的硬件设备上运行功耗高及运行慢的问题,提出一种基于现场可编程门阵列(FPGA)的CNN定点计算加速方法。首先提出一种定点化方法,并且每层卷积设计不同的尺度参数,使用相对散度确定位宽的长度,以减小CNN参数的存储空间,而且研究不同量化区间对CNN精度的影响;其次,设计参数复用方法及流水线计算方法来加速卷积计算。为验证CNN定点化后的加速效果,采用了人脸和船舶两个数据集进行验证。结果表明,相较于传统的浮点卷积计算,所提方法在保证CNN精度损失很小的前提下,当权值参数和输入特征图参数量化到7-bit时,在人脸识别CNN模型上的压缩后的权重参数文件大小约为原来的22%,卷积计算加速比为18.69,同时使FPGA中的乘加器的利用率达94.5%。实验结果表明了该方法可以提高卷积计算速度,并且能够高效利用FPGA硬件资源。 相似文献
5.
当前,高计算消耗的应用和服务逐渐从集中式云计算中心向网络边缘的嵌入式环境迁移,FPGA因其灵活性和高能效特性,使其在边缘计算的嵌入式系统中得到广泛的应用.传统的FPGA卷积神经网络构造方法存在设计周期长和优化空间小等缺点,无法有效探索硬件加速器的设计空间,在网络边缘的的嵌入式环境下尤为明显.针对该问题,提出一种面向边缘计算的嵌入式FPGA平台卷积神经网络通用的构建方法.通过设计卷积神经网络函数中的网络层间可复用的加速器核心,以少量硬件资源实现性能优化的卷积神经网络硬件;通过拓展设计、缓存优化及数据流优化等技术,实现HLS设计优化;利用该方法在嵌入式FPGA平台上构建相应卷积神经网络,实验结果表明:优化后的网络模型在与Xeon E5-1620 CPU和GTX Titan GPU相比时,在功耗与性能方面具有一定优势,适合应用于边缘计算环境中. 相似文献
6.
7.
为解决当前比特稀疏架构的性能瓶颈,提出高能效比特稀疏加速器设计.首先提出一种激活值编码方法和相应的电路来提高卷积神经网络的比特稀疏度,结合比特串行电路实时跳过激活值的零值比特来加速神经网络的计算;然后提出一种列共享同步机制,以解决比特稀疏架构的同步问题,并在较小的面积和功耗开销下大幅提高比特稀疏架构的计算性能.在SMIC40 nm工艺和1 GHz频率下,评估不同的比特稀疏架构在卷积神经网络上的能效.实验结果表明,与非稀疏加速器VAA和比特稀疏加速器LS-PRA相比,所提出的加速器AS-PRA分别提高了544%和179%的能效. 相似文献
8.
9.
随着人工智能的快速发展,卷积神经网络(CNN)在很多领域发挥着越来越重要的作用。分析研究了现有卷积神经网络模型,设计了一种基于现场可编程门阵列(FPGA)的卷积神经网络加速器。在卷积运算中四个维度方向实现了并行化计算;提出了参数化架构设计,在三种参数条件下,单个时钟周期分别能够完成512、1024、2048次乘累加;设计了片内双缓存结构,减少片外存储访问的同时实现了有效的数据复用;使用流水线实现了完整的神经网络单层运算过程,提升了运算效率。与CPU、GPU以及相关FPGA加速方案进行了对比实验,实验结果表明,所提出的设计的计算速度达到了560.2 GOP/s,为i7-6850K CPU的8.9倍。同时,其计算的性能功耗比达到了NVDIA GTX 1080Ti GPU的3.0倍,与相关研究相比,所设计的加速器在主流CNN网络的计算上实现了较高的性能功耗比,同时不乏通用性。 相似文献
10.
卷积神经网络(convolutional neural network, CNN)在图像处理、语音识别、自然语言处理等领域实现了很好的性能.大规模的神经网络模型通常遭遇计算、存储等资源限制,稀疏神经网络的出现有效地缓解了对计算和存储的需求.尽管现有的领域专用加速器能够有效处理稀疏网络,它们通过算法和结构的紧耦合实现高能效,却丧失了结构的灵活性.粗粒度数据流架构通过灵活的指令调度可以实现不同的神经网络应用.基于该架构,密集卷积规则的计算特性使不同通道共享相同的一套指令执行,然而稀疏网络中存在权值稀疏,使得这些指令中存在0值相关的无效指令,而现有的指令执行方式无法自动跳过它们从而产生无效计算.同时在执行不规则的稀疏网络时,现有的指令映射方法造成了计算阵列的负载不均衡.这些问题阻碍了稀疏网络性能的提升.基于不同通道共享一套指令的前提下,根据稀疏网络的数据和指令特征增加指令控制单元实现权值数据中0值相关指令的检测和跳过,同时使用负载均衡的指令映射算法解决稀疏网络中指令执行不均衡问题.实验表明:与密集网络相比稀疏网络实现了平均1.55倍的性能提升和63.77%的能耗减少.同时比GPU(cuSparse)和Cambricon-X实现的稀疏网络分别快2.39倍(Alexnet)、2.28倍(VGG16)和1.14倍(Alexnet)、1.23倍(VGG16). 相似文献
11.
12.
针对现有海量数字图像信息落后,提出了新型的压缩算法,设计出基于FPGA的视频图像采集系统.应用深度卷积神经网络优化视频图像编码算法和聚类算法实现数据特征提取,将图像与距离信息作为深度卷积神经网络的输入与输出,并利用其特征提取能力学习图像特征的距离信息,提取深度卷积神经网络中的全连接层作为编码,通过迭代调整确定图像编码,完成图像压缩.应用测试结果显示,该算法具有较高效率优势,且图像压缩解码后质量较好. 相似文献
13.
14.
针对基于嵌入式现场可编程门阵列(FPGA)平台的卷积神经网络加速器由于资源有限导致处理速度受限的问题,提出一种高性能卷积神经网络加速器.首先根据卷积神经网络和嵌入式FPGA平台的特点,设计软硬件协同操作架构;然后在存储资源和计算资源的限制下,分别提出二维直接内存存取分块和权衡数字信号处理单元与查找表使用的优化策略;最后针对人脸检测的应用,对SSD网络模型进行优化,采用软硬件流水结构,提高人脸检测系统的整体性能.在Xilinx ZC706开发板上实现此加速器,实验结果表明,该加速器可达到167.5 GOPS的平均性能和81.2帧/s的人脸检测速率,其平均性能和人脸检测速率是嵌入式GPU平台TX2的1.58倍. 相似文献
15.
卷积神经网络的高计算复杂性阻碍其广泛用于实时和低功耗应用,现有软件实现方案难以满足其对运算性能与功耗的要求,传统面向FPGA的卷积神经网络构造方式具有流程复杂、周期较长和优化空间较小等问题。针对该问题,根据卷积神经网络计算模式的特点,提出一种面向云端FPGA的卷积神经网络加速器的设计及其调度机制。通过借鉴基于HLS技术、引入循环切割参数和对卷积层循环重排的设计,采用模块化方式构造网络,并进行参数拓展以进一步优化加速器处理过程;通过分析系统任务和资源的特性总结调度方案,且从控制流和数据流两方面对其进行优化设计。与其他已有工作相比,提出的设计提供了一种同时具有灵活性、低能耗、高能效和高性能的解决方案,并且探讨了加速器的高效通用调度方案。实验结果表明,该加速器可在有效提高运算整速度的同时减少功耗。 相似文献
16.
17.
随着以卷积神经网络为代表的深度学习得到广泛应用,神经网络模型中的计算量也急速增长,推动了深度学习加速器的发展。如何针对加速器硬件的体系结构特性进行加速和优化神经网络模型的性能成为研究热点。针对自主设计的多核向量加速器FT-M7004上的VGG网络模型推理和训练算法,分别提出了卷积、池化和全连接等核心算子的向量化映射方法,采用SIMD向量化、DMA双缓冲传输和权值共享等优化策略,充分发挥了向量加速器的体系结构优势,取得了较高的计算效率。实验结果表明,在FT-M7004平台上,卷积层推理和训练的平均计算效率分别达到了86.62%和69.63%;全连接层推理和训练的平均计算效率分别达到了93.17%和81.98%;VGG网络模型在FT-M7004上的推理计算效率超过GPU平台20%以上。 相似文献
18.
19.
20.
近年来,卷积神经网络(CNN)展现了强大的性能,被广泛应用到了众多领域.由于CNN参数数量庞大,且存储和计算能力需求高,其难以部署在资源受限设备上.因此,对CNN的压缩和加速成为一个迫切需要解决的问题.随着自动化机器学习(AutoML)的研究与发展,AutoML对神经网络发展产生了深远的影响.受此启发,提出了基于参数估计和基于遗传算法的两种自动化加速卷积神经网络算法.该算法能够在给定精度损失范围内自动计算出最优的CNN加速模型,有效地解决了张量分解中,人工选择秩带来的误差问题,能够有效地提升CNN的压缩和加速效果.通过在MNIST和CIFAR-10数据集上的严格测试,与原网络相比,在MNIST数据集上准确率稍微下降了0.35%,模型的运行时间获得了4.1倍的大幅提升;在CIFAR-10数据集上,准确率稍微下降了5.13%,模型的运行时间获得了0.8倍的大幅提升. 相似文献