首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ReB2‐type hexagonal Osmium diboride (OsB2) has been predicted to exhibit higher hardness than its orthorhombic phase, but hexagonal‐orthorhombic phase transformation occurs at temperature higher than 600°C, resulting in the decrease in its hardness. Therefore, ReB2‐type hexagonal OsB2 samples with Re addition were produced by a combination of mechanochemical method and pressureless sintering technique, and the effects of Rhenium (Re) addition on phase composition, thermal stability and mechanical properties of OsB2 were investigated in this study. X‐ray diffraction (XRD) analysis of the as‐synthesized powders by high‐energy ball milling indicates the formation of hexagonal Os1‐xRexB2 solid solution with Re concentration of 5 and 10 at.% without forming a second phase. After being sintered at 1700°C, part of the hexagonal phase in OsB2 transformed to orthorhombic structure, while Os0.95Re0.05B2 and Os0.9Re0.1B2 maintained their hexagonal structure. This suggests that the thermal stability of the hexagonal OsB2 was significantly improved with the addition of Re. Scanning electron microscopy (SEM) photographs show that all of the as‐sintered samples exhibit a homogeneous microstructure with some pores and cracks formed throughout the samples with the relative density >90%. The measurements of micro‐hardness, nano‐hardness, and Young's modulus of the OsB2 increased with Re addition, and these properties of the sample with 5 at.% addition of Re is higher than that with 10 at.% Re.  相似文献   

2.
This work attempts to understand the effect of W addition on microstructure, thermal stability, and hardness of ReB2 type hexagonal osmium diboride (h-OsB2). h-OsB2 samples with W atomic concentration of (Os+W) from 0% to 30% were synthesized by mechanochemical method combines with pressure-less sintering. The XRD patterns of the as-synthesized powders indicate the formation of Os1-xWxB2 (x?=?0, 0.1, 0.2 and 0.3) solid solution, which has a ReB2-type hexagonal structure. After being high temperature sintered, part of the h-OsB2 phase of the pure OsB2 transformed to orthorhombic (o) phase, while the h-OsB2 phase was maintained with the addition of W, which suggests that the thermal stability of the sample was remarkably improved. A macroscopically homogeneous structure with some pores can be found from all groups of the as-sintered Os1-xWxB2 (x?=?0, 0.1, 0.2, 0.3) samples, with some B-rich areas distributed in the W doped samples. The lattice parameters of the Os1-xWxB2 (x?=?0, 0.1, 0.2 and 0.3) solid solutions linearly decreased with the increase of the W concentration. The micro-hardness of the OsB2 sintered samples is 25?±?2?GPa under an applied load of 0.49?N, which increased to 34?±?2?GPa, 38?±?2 and 37?±?2?GPa, respectively when the W concentration increased from 10, 20 and 30?at%. The increased hardness of the h-OsB2 can be mainly attributed to the improvement of thermal stability with the addition of W.  相似文献   

3.
Transition metal osmium borides were synthesized by mechanochemical method using high‐energy ball‐milling with Os (Osmium) and B (Boron) powders as raw materials. The formation process, reaction mechanism, and thermal stability of the mechochemically synthesized osmium borides were studied. Almost pure Os2B3 phase was obtained when the Os‐to‐B molar ratio was 1:2; while ReB2‐type hexagonal OsB2 with a small amount of RuB2‐type orthorhombic OsB2 was obtained when the Os‐to‐B molar ratio was 1:3. Stoichiometry OsB2 was obtained from boron rich starting mixture powders due to the B loss during the high‐energy ball‐milling process. It was also found that WC and osmium oxide were present as contaminants after ball milling for 40 hours. Heat treatment results revealed that the as‐synthesized Os2B3 powders are thermally stable in flowing Ar up to 800°C, but a transformation from hexagonal to orthorhombic structure partially occurred for the OsB2 powders as low as 600°C.  相似文献   

4.
《Ceramics International》2019,45(12):14756-14760
As a new type of hard/super-hard materials, the consolidation of transition metal borides is very critical for obtaining bulk ceramics with excellent properties. In the present work, buried boron powder assisted pressures-less sintering was applied for preparation of Os0.9Re0.1B2 ceramics with the aim for mechanical properties improvement. Os0.9Re0.1B2 powders were firstly synthesized via mechanochemical technique with moral ratios of (Os + Re):B = 1:2.5 and 1:2.25, respectively. Bulk samples were then consolidated using buried powder sintering and exposed sintering, respectively, for comparison. The influence of buried boron powder sintering on the phase composition, microstructure, and mechanical properties (micro-hardness, nano-hardness, and Young's modulus) of Os0.9Re0.1B2 ceramic samples were investigated. The results show that by employing buried powder sintering, B powders surrounded the sample during the sintering process, which on the one hand, inhibited decomposition of Os0.9Re0.1B2 to (Os0.9Re0.1)2B3, while on the other hand, decreased the grain size of the sample. Further, a columnar to equiaxial transition for the grains was found with grain size decreased when (Os + Re):B = 1:2.25. The samples prepared with buried powder sintering have higher mechanical properties as compared with those prepared with exposed sintering. The sample prepared from (Os + Re): B = 1:2.25 by buried powder sintering had the best mechanical properties among the four studied samples, along with the smallest grain size. The mechanical properties of the samples were greatly influenced by the grain size and relative density.  相似文献   

5.
Rhenium diboride (ReB2) powder was prepared by mechanochemical processing of Re–B powder mixtures with subsequent annealing at temperatures of 600 °C to 1200 °C. Reactive evolution during the synthesis was investigated; furthermore, the effects of the amount of excess B on the reactions that occurred during the synthesis were assessed. The substantial reaction of Re with B occurred at 700 °C to form Re7B3 with a small amount of ReB2. At 800 °C, Re7B3 converted into ReB2; this conversion was enhanced with increasing temperature and increasing amount of excess B. At 1000 °C or above, single-phase ReB2 powder without trace quantities of Re7B3 was obtained for compositions with 15 wt% or greater excess B. The synthesized ReB2 powder particles were submicrometer with the vast majority being ∼500 nm. In addition, the resulting ReB2 powders were consolidated by hot pressing or spark plasma sintering to examine the sinterability of the powders.  相似文献   

6.
The narrow composition design space of high-entropy transition metal diborides (HE TMB2) limits their further development. In this study we designed six quaternary and quinary high-entropy transition metal and rare-earth diborides (HE TMREB2) and investigated their phase stability using the energy distribution of the local mixing enthalpy of all possible configurations. The results show that both quaternary and quinary HE TMREB2 have higher enthalpic driving forces, which facilitates the formation of single-phase AlB2-type structures between TMB2 and REB2. Calculations of elastic constants show that the TMB2 component has the greatest effect on the c44 elastic constant and shear modulus G, while REB2 significantly influences the bulk modulus B. Furthermore, LuB2 and TmB2 substantially affect the elastic modulus anisotropy of HE TMB2. Rare-earth atoms in HE TMREB2 can enhance the nonharmonic interactions between phonons, which results in a significant hindrance in the thermal transport of low-frequency phonons as well as an increase in the volume thermal expansion coefficients. Thus, the incorporation of REB2 into HE TMB2 has a significant impact on the phase stability and properties.  相似文献   

7.
Lanthanum molybdate, La2Mo2O9, has been attracted considerable attention owing to its high concentration of intrinsic oxygen vacancies, which could be reflected by enhanced phonon scattering and low thermal conductivity. A new series of La2Mo2O9‐based oxides of the general formula La2?xSmxMo2?xWxO9, where x ≤ 0.2, were synthesized by citric acid sol–gel process. The variation in thermal conductivity with Sm3+and W6+ fractions was analyzed based on structure information provided by X‐ray diffraction and Raman spectroscopy. The fully dense La2?xSmxMo2?xWxO9 ceramics showed a minimum thermal conductivity value [κ = 0.84 W·(m·K)?1,T = 1073 K] at the composition of La1.8Sm0.2Mo1.8W0.2O9, which stems from the multiple enhanced phonon scatterings due to mass and strain fluctuations at the La3+ and Mo6+ sites as well as the high concentration of intrinsic oxygen vacancies embedded in the crystal lattice. The thermal conductivities present an abrupt decrease at the structural transition, which is due to the phase transformation from a low‐temperature ordered form (monoclinic α‐La2Mo2O9) to a high‐temperature disordered form (cubic β‐La2Mo2O9).  相似文献   

8.
An experimental study on the preparation of two tungsten borides, WB and W2B5, was conducted by self-propagating high-temperature synthesis (SHS), during which borothermic reduction of WO3 and elemental interaction of W with boron proceeded concurrently. Powder mixtures with two series of molar proportions of WO3:B:W = 1:5.5:x (with x = 1.16–2.5) and 1:7.5:y (with y = 0.5–1.33) were adopted to fabricate WB and W2B5, respectively. The starting stoichiometry of the reactant compact substantially affected the combustion behavior and the phase composition of the final product. The increase of metallic tungsten and boron reduced the overall reaction exothermicity, leading to a decrease in both combustion temperature and reaction front velocity. The initial composition of the reactant compact was optimized for the synthesis of WB and W2B5. In addition to small amounts of W2B and W2B5, the powder compact of WO3 + 5.5B + 2 W produced WB dominantly. Optimum formation of W2B5 was observed in the sample of WO3 + 7.5B + 0.85W. Experimental evidence indicates that an excess amount of boron about 10–13% is favorable for the formation of WB and W2B5.  相似文献   

9.
The ceramics with the formula of Sr1−xSm2x/3TiO3 (x = 0-0.5) were prepared by conventional ceramic process. A single phase of SrTiO3-type with cubic perovskite structure was found companied with a decrease in crystal volume when x < 0.5, which was confirmed by X-ray diffraction results and Rietveld refine. At the level of x = 0.5, the sample consisted of two phases of SrTiO3-type and Sm2Ti2O7. Raman spectra were used to confirm the change of vibration to explain the variation in microwave dielectric properties. The dielectric constant decreased, the quality factor increased, and the temperature coefficient shifted negatively, when the x value increased from 0 to 0.4. When the x value located between 0.3 and 0.4, the ceramics exhibited high dielectric constant of 140-152, high quality factor (>6000).  相似文献   

10.
The stability of hexagonal ReB2 type OsB2 powder upon heating under reforming gas was investigated. Pure Os metal particles were detected by powder X-ray diffraction starting at 375°C and complete transformation of OsB2 to metallic Os was observed at 725°C. The mechanisms of precipitation of metallic Os is proposed and changes in the lattice parameters of OsB2 upon heating are analysed in terms of the presence of oxygen or water vapour in the heating chamber. Previous studies suggested that Os atoms possess (0) valence, while B atoms possess both (+3) and (?3) valences in the alternating boron/osmium sheet structure of hexagonal (P63/mmc, No. 194) OsB2; if controllable method for Os removal from the lattice could be found, the opportunity would arise to form two-dimensional (2D) layers consisting of pure B atoms.  相似文献   

11.
《Ceramics International》2020,46(3):2612-2617
To promote the densification and therefore the mechanical properties of boride-based ceramics, MgO was added as sintering aid into Os0.9Re0.1B2 powders for densification by using spark plasma sintering (SPS). The Os0.9Re0.1B2 powders were synthesized by mechanochemical method from powder mixture of Os, Re and amorphous B. The role of MgO on densification, phase composition, microstructure and mechanical properties (hardness, fracture toughness and wear behavior) were studied by using X-ray diffraction (XRD), scanning electron microscope (SEM) with energy-dispersive spectroscopy (EDS), micro indentation and ball-on-disk tribometer. The results show that, with the introduction of MgO as sintering aid, the relative density of the Os0.9Re0.1B2 ceramic samples increased. When the MgO content reached 9 wt%, the as-sintered sample is almost fully dense. No obvious regularity was found from the samples with the addition of different content of MgO. Vickers hardness values of the samples with 0, 3 wt% and 9 wt% MgO are found to be very close with each other within the experimental error (~30 GPa), while the sample with the addition of 6 wt% MgO exhibits the highest hardness of ~35 GPa. The fracture toughness of the samples is decreased slightly with the addition of MgO. The friction coefficient and wear rate of the sample with the addition of 6 wt% MgO was also found to be the lowest among all samples, which indicate best wear resistance. As a whole, with the addition content of 6 wt% MgO, the Os0.9Re0.1B2 ceramic sample performs relatively excellent mechanical properties among four groups of samples.  相似文献   

12.
《Ceramics International》2022,48(24):36478-36489
Recently, BaTiO3-BiMeO3 ceramics have garnered focused research attention due to their outstanding performance, such as thermal stability, energy efficiency and rapid charge-discharge behavior, however, a lower recoverable energy storage density (Wrec) caused by a relatively low Pmax (<30 μC/cm2) mainly hinders practical applications. Herein, the energy density and thermal stability are improved by adding a tertiary component, i.e., Bi0.5Na0.5TiO3, into BaTiO3-BiMeO3, resulting in xBi0.5Na0.5TiO3-modified 0.88BaTiO3-0.12Bi(Zn2/3Nb1/3)O3 ceramics, with x = 0, 0.1, 0.2, 0.3 and 0.4, with superior dielectric properties and eco-friendly impact. Incorporating Bi0.5Na0.5TiO3 with a high saturation polarization and Curie temperature not only significantly enhances Pmax of BaTiO3-Bi(Zn2/3Nb1/3)O3 but also improves Curie temperature of (1-x)[0.88BaTiO3-0.12Bi(Zn2/3Nb1/3)O3]-xBi0.5Na0.5TiO3 system. Combined with complementary advantages, modified ceramics render a superior energy storage performance (ESP) with a high Wrec of 3.82 J/cm3, efficiency η of 94.4% and prominent temperature tolerance of 25–200 °C at x = 0.3. Moreover, this ceramic exhibit excellent pulse performance, realizing discharge energy storage density Wdis of 2.31 J/cm3 and t0.9 of 244 ns. Overall, the proposed strategy effectively improved comprehensive properties of BaTiO3-based ceramics, showing promise in next-generation pulse applications.  相似文献   

13.
Lanthanum hexaaluminate is a promising competitor to establish yttria partially stabilized zirconia as a thermal barrier coating material for Ni‐based superalloy due to its relative low intrinsic thermal conductivity and low sinterability at temperatures exceeding 1100°C. Sr2+ and Ti4+ were selected as two dopants to partially substitute the La3+ and Al3+ in LaMgAl11O19, respectively. The variation in thermal conductivity with Sr2+ and Ti4+ fractions was analyzed based on structure information provided by X‐ray diffraction and Raman spectroscopy. The average crystal size of LaMgAl11O19 sintered at 1600°C for 10 min by spark plasma sintering is in nanoscale. The fully dense La1?xSrxMgAl11?xTixO19 solid solution showed a minimum thermal conductivity value (λ = 1.12 W/(m K)?1,T = 1273 K) at the composition of La0.5Sr0.5MgAl10.5Ti0.5O19,which possibly reduces from the enhanced phonon scattering due to mass and strain fluctuations at the Ln3+ and B3+ sites.  相似文献   

14.
Dielectric ceramics with a high recoverable energy density (Wrec) and high efficiency are desirable for the development of pulsed power capacitors under low electric fields. In this study, through the introduction of SrSc0.5Nb0.5O3 into (Bi0.5Na0.5Ti0.95Al0.025Nb0.025O3) [(1-x)BNTA-xSSN], a considerable recoverable energy storage density (Wrec) of approximately 2.7 J/cm3 and energy storage efficiency (η) of approximately 76 % at 210 kV/cm are achieved at x = .1; additionally, η is further improved to 85 % at x = .2. Moreover, η and Wrec of .9BNTA-.1SSN exhibit outstanding stability (thermal and frequency stability) at 150 kV/cm, which is superior to that of other lead-free ceramics. The excellent energy storage performance is attributed to the increased relaxation degree and the formation of ferroelectric nanodomains, whereas the enhanced Eb is ascribed to the increased electrical resistivity and decreased grain size upon modification. These results indicate the potential of (1-x)BNTA-xSSN as an ideal candidate for energy-storage applications.  相似文献   

15.
Lithium borate (LB) glasses and crystals with x = Li/(Li + B) = mole fraction of Li2O of 0.2–0.5 have been synthesized by the quenching method. The thermodynamics of these materials were analyzed by high-temperature oxide melt solution calorimetry. The formation enthalpies from oxides of glasses range from −33.6 to −67.3 kJ/mol and those of crystals range from −42.1 to −77.4 kJ/mol, where compositions are given on the basis of one mole of (Li2O + B2O3). The formation enthalpies of both glasses and crystals become more negative with increasing Li2O mole fraction up to 0.5. The enthalpies of formation of glasses can be fit over the entire composition range (0 < x < 1) by a quadratic polynomial). The vitrification enthalpies were derived for x = 0.2 to 0.5 and ranged from 8.5 to 17.6 kJ/mol. The main factors controlling energetics are the strongly exothermic acid–base reaction between the network former (B2O3) and the network modifier (Li2O) and the formation of tetrahedrally coordinated boron in the glasses and crystals.  相似文献   

16.
A new series of rare earth solid solutions Yb2?xLaxW3O12 were successfully synthesized by the solid-state method. Effects of substituted ion lanthanum on the microstructures and thermal expansion properties in the resulting Yb2?xLaxW3O12 ceramics were investigated by X-ray diffraction (XRD), thermogravimetric analyzer (TGA), field emission scanning electron microscope (FESEM) and thermal mechanical analyzer (TMA). Results indicate that the structural phase transition of the Yb2?xLaxW3O12 changes from orthorhombic to monoclinic with increasing substituted content of lanthanum. The pure phases can form in the composition range of 0  x < 0.5 with orthorhombic structure and 1.5 < x  2 with monoclinic one. High lanthanum content leads to a low hygroscopicity of Yb2?xLaxW3O12. Negative thermal coefficients of the Yb2?xLaxW3O12 (0  x  2) also vary from ?7.78 × 10?6 K?1 to 2.06 × 10?6 K?1 with increasing substituted content of lanthanum.  相似文献   

17.
Ceramic-based dielectric capacitor are highly suitable for pulsed power applications due to their high power density and excellent reliability. However, the ultrahigh applied electric field limit their applications in integrated electronic devices. In this work, (1−x){0.96(Bi0.5Na0.5)(Ti0.995Mn0.005)O3-0.04BiAlO3}-xNaNbO3 (BNT-BA-xNN, x = 0, 0.04, 0.08, 0.12, and 0.16) ternary ceramics were designed to achieve excellent energy storage properties. It was found that the introduction of NaNbO3 (NN) effectively increase the difference (ΔP) between Pmax and Pr, resulting in an obvious enhancement of the energy storage properties. High recoverable energy storage density, responsivity, and power density, that is, Wrec = 2.01 J/cm3, ξ Wrec/E = 130.69 J/(kV⋅m2), and PD = 25.59 MW/cm3, accompanied with superior temperature stability were realized at x = 0.14 composition. In addition, the thermal stable dielectric properties of the sample can be prominently improved with increasing NN content. The temperature coefficient of capacitance (TCC) of x = 0.16 composition is lower than 15% over the temperature range from 49°C to 340°C, with a high dielectric permittivity of 1647 and a low dielectric loss (0.0107) at 150°C. All these features show that the BNT-BA-xNN ceramics are promising materials for energy storage application.  相似文献   

18.
Ceramics in the solid solution system, (1 ? x)Ba0.8Ca0.2TiO3xBi(Mg0.5Ti0.5)O3, were prepared by a conventional mixed oxide route. Single‐phase perovskite‐type X‐ray diffraction patterns were observed for compositions x < 0.6. A change from tetragonal to single‐phase cubic X‐ray patterns occurred at x ≥ 0.1. Dielectric measurements indicated relaxor behavior for x ≥ 0.1. Increasing the Bi(Mg0.5Ti0.5)O3 content improved the temperature sensitivity of relative permittivity ?r at high temperatures. At x = 0.5, a near‐plateau relative permittivity, 835 ± 40, extended across the temperature range, 65°C–550°C; the permittivity increased at x = 0.6 to 2170 ± 100 for temperatures 160°C–400°C (1 kHz). The corresponding loss tangent, tanδ, was ≤0.025 for temperatures between 100°C and 430°C for composition x = 0.5; at x = 0.6, losses increased sharply at >300°C. Comparisons of dielectric properties with other materials proposed for high‐temperature capacitor applications suggest that (1 ? x)Ba0.8Ca0.2TiO3xBi(Mg0.5Ti0.5)O3 ceramics are a promising base material for further development.  相似文献   

19.
Energy storage ceramic capacitors advance in high power density and working voltage, but challenge in simultaneously large recoverable energy density (Wrec), high energy efficiency (η), and good thermal stability. To achieve this, a novel lead-free ceramic system (1-x)(Bi0.5Na0.5)TiO3-x(BaZr0.3Ti0.7O3) [(1-x)BNT-xBZT] was explored by tailoring the ferroelectric relaxor states. The introduction of BZT gradually promotes the transformation of ferroelectric states into relaxor states at around the room temperature for x = 0.3-0.5 that presents a pinched P-E loop. The optimized composition of x = 0.45 possesses a large Wrec of up to 2.6 J/cm3 and ultrahigh ƞ of 94%, with only a small variation (±8%) in Wrec and the high ƞ (90%) over a broad temperature range (−30°C to 180°C), demonstrating the superior performances compared to many existing lead-free ceramics. The remarkable advantages of the novel BNT-BZT lead-free ceramics explored in this study are thus promising for the high-efficiency and temperature-stable energy storage capacitor applications.  相似文献   

20.
《Ceramics International》2021,47(24):34687-34694
To improve the negative thermal expansion (NTE) performance of ln2W3O12, a novel series of NTE (KMg)xln2-xW3O12 ceramics were fabricated via the solid-state method. The effects of (KMg)3+ substitution on the phase composition, microstructure and thermal expansion property of the ln2W3O12 ceramics were characterized using X-ray diffraction (XRD), Raman spectrometer (Raman), X-ray photoelectron spectrometer (XPS), scanning electron microscopy (SEM), transmission electron microscope (TEM) and thermal mechanical analyzer (TMA). Results indicate that (KMg)3+ can partially replace In3+ in In2W3O12 and form a new phase KxMgxln2-xW3O12 with monoclinic symmetry. For x = 0.5, pure monoclinic (KMg)0.5ln1.5W3O12 ceramics is prepared and shows strong NTE. Its coefficient of thermal expansion is −7.89 × 10−6 °C−1 in 30–700 °C, in addition, no phase transition was observed over the entire testing temperature range. These research results indicate that double cations co-substitution is an effective strategy to improve the NTE property of ln2W3O12 through crystal structure modulation. This strategy could be extended to the performance modulation of other NTE materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号