首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
为解决三相高频链矩阵整流器稳态情况下LC滤波器谐振导致电网电流低频振荡,动态过程中系统强耦合造成输出响应差的问题,提出了一种基于输入滤波电容电压和滤波电感电流反馈的闭环控制方法。首先建立三相高频链矩阵整流器的数学模型,根据整流器的小信号数学模型,建立电容电压控制内环、电感电流控制外环的双闭环控制策略;利用波特图和零极点对消,设计双闭环控制策略中比例积分(PI)控制器的系数。在闭环控制策略中,前馈解耦的控制方法消除了坐标变换导致的d,q轴电流互相影响,并且动态电容电压的闭环控制抑制了电网输入侧LC谐振导致的电网电流低频振荡。最后,通过实验验证了所提矩阵整流器闭环控制方法的可行性与有效性。  相似文献   

2.
针对宽范围输入的双管Buck-Boost变换器,在Buck和Boost两模式之间进行切换和输入电压发生波动时,电感电流和输出电压存在较大波动的问题,提出了带输入电压前馈的两模式平均电流控制策略。该策略通过将具有电压电流双闭环结构的平均电流控制与单载波-双调制的调制方法相结合,来提高变换器的动态响应性能,实现变换器两模式的自动近似平滑切换,同时对电感电流进行有效控制,保护设备安全。为了克服传统双闭环前馈函数实现和化简困难的缺点,提出将输入电压前馈引入电流内环从而大幅提高了变换器的输入动态响应性能。最后建立了MATLAB/Simulink仿真模型和硬件试验平台,验证了所提控制方法的有效性。  相似文献   

3.
针对电力电子变压器前级单相脉冲整流器直流侧电压含有二倍电网频率脉动的现象,该文以电力电子变压器中的双向有源桥式DC-DC变换器为研究对象,研究在输入电压脉动情况下变换器输入与输出之间的关系。首先通过变换器的小信号模型,分别针对输出电压开环和闭环控制情况,揭示输入电压脉动情况下输入与输出电压之间的定量关系。为了抑制输出电压脉动,提出一种基于的输入电压前馈的虚拟功率控制方法,并且选取虚拟功率控制方法和输入电压前馈的PI闭环控制与之对比。在基于TMS320F28335控制器的实物实验平台上,对理论分析和抑制算法进行实验验证。实验结果表明:在输入电压脉动情况下,输入与输出电压之间的定量关系描述正确,并且传统电压闭环对输出脉动的影响很小,与虚拟功率控制方法和输入电压前馈的PI闭环控制相比,所提出的输入电压前馈的虚拟功率控制方法能更加有效地抑制输出电压脉动,并且在输入电压突变和负载突变时也具有最优的动态性能。  相似文献   

4.
作为定值控制系统的BOOST变换器,系统的抗干扰性尤为重要。为了提高BOOST系统抗干扰能力,本文通过对BOOST变换器小信号模型的详细分析,结合有输入电压前馈和无前馈情况下,采用电压模式控制时系统的特性,提出了一种前馈—电压模式的控制方法,能快速抑制输入电压和输出电流扰动,尤其能将输入电压的干扰近似完全消除;通过对双极点—双零点控制器的详细分析,提出了快速合理的设计boost变换器在新控制策略下控制器参数的方法。最后通过仿真验证了该控制策略抑制干扰的优越性和控制器参数设计方法的合理性。这种控制方法的思想同样适用于其它DC-DC变换器。  相似文献   

5.
双管Buck-Boost变换器的输入电压前馈控制策略   总被引:1,自引:0,他引:1  
双管Buck-Boost变换器适用于宽输入电压范围场合。采用双调制–单载波的两模式控制策略可实现其整个输入电压范围内的高效率和工作模式的自动平滑切换,其工作模式即为高输入电压区间的 Buck 模式和低输入电压区间的Boost模式。为抑制输入电压扰动对输出电压的影响,通过建立双管Buck-Boost变换器不同工作模式下的小信号模型,推导相应的输入电压前馈函数,并分析电路参数变化对前馈函数的影响,进而提出一种带输入电压前馈的两模式控制策略。采用所提出控制策略的双管 Buck-Boost 变换器,可实现工作模式和相应输入电压前馈函数的同时自动选择,及工作模式的近似平滑切换,从而保证变换器整个输入电压范围内的高效率和良好的输入暂态响应。为更好地展现所提出控制策略的优点,对带输入电压前馈和不带输入电压前馈的两模式控制策略进行比较。最后,实验室搭建一台原理样机,并对所提出的控制策略进行实验验证。  相似文献   

6.
提出了基于非隔离型Weinberg变换器的航天器用电源控制器(PCU)中蓄电池放电调节器(BDR)的控制系统,应用状态空间平均法建立了Weinberg变换器动态小信号模型。为实现蓄电池整个工作范围内系统的稳定,提出了基于输入电压前馈的非隔离型Weinberg变换器的双闭环控制策略,设计了电流内环、电压外环,最后搭建了实验样机,实验证明系统具有良好的瞬态响应速度和整个输入电压范围的恒定带宽的优点,证明了模型的正确性和控制策略的有效性。  相似文献   

7.
双电压合成矩阵变换器闭环控制的研究   总被引:14,自引:13,他引:14  
该文提出了一种基于双电压合成矩阵变换器的闭环控制方法。该方法根据矩阵变换器的实际输出电压与期望输出电压的偏差,计算电压的实际占空比与理想占空比的偏差,并将此偏差作为负反馈加到下一采样周期的占空比中,从而实现系统的闭环控制。文中详细阐述了闭环控制系统的基本原理及实现策略。利用该文提出的闭环控制方法,可保证矩阵变换器的输出电压很好地跟随给定的期望电压,并可有效地抑制矩阵变换器输出电压及输入电波形的畸变。仿真结果表明:采用闭环控制,对于抑制因输入电压畸变或器件性能不理想等因素而导致的矩阵变换器输出电压及输出电流波形的畸变,具有明显效果。  相似文献   

8.
为消除由输入电源扰动引起的输出电压工频纹波,改善DC/DC变换器动态性能,根据平均变量建模思想,为电压型PWM控制的Buck型变换器,建立连续导电工作模式(CCM)下统一的平均变量等效电路,分析等效电路并根据不变性原理提出输入电压全补偿前馈控制原理及实现方法。采用该方法的Buck型变换器可完全补偿输入电压扰动,其输出电压对输入电压扰动具备动态不变性。仿真研究结果验证了本文前馈控制原理及实现方法的正确性。  相似文献   

9.
针对常规三相-三相矩阵变换器电压传输率低的缺陷,文章研究了一种多模块矩阵变换器拓扑结构,详细介绍了线电压合成调制策略的实现过程,给出输入侧与输出侧扇区划分方式、占空比表达式,提出以输出调制系数作为控制对象的闭环控制策略。在闭环控制中因输入无阻尼LC滤波器引起输入电流谐振进而影响输入性能的问题,在上述线电压合成闭环控制策略基础上,改进了原有采用高通滤波器提取高频谐波量的谐振抑制方法,提出了通过简单的数学计算将输出负载电流dq轴分量中的高频谐波量反馈到闭环控制中,实现了多模块矩阵变换器输入谐振的有效抑制。最后,建立仿真模型,采用Matlab有效抑制输入谐振,同时具有良好的动态与静态性能。  相似文献   

10.
以能源互联网的最核心环节—能源路由器为研究背景,将前端级联H桥和双有源全桥(DAB)级分别进行独立控制时,将DAB级等效为输入独立输出并联拓扑进行研究.为提高其输出端负载情况突变及输入电压突变时输出电压的动态性能,借鉴直接功率思想,结合闭环控制和前馈控制,以H桥内的超前桥臂与滞后桥臂之间的移相角为控制变量,提出了一种复合控制策略.通过实验将所提复合控制与传统电压闭环控制进行性能对比验证.实验表明:该控制方法极大提升了变换器的动态性能,其控制实现也相对简单且对电路参数依赖性较小,有较好的兼容性和可移植性,在其他类型变换器动态响应研究中有借鉴的潜力.  相似文献   

11.
以实现三相-两相矩阵变换器(3-2 MC)输入电流正弦化控制为目标,推导了在该目标下两相输出电压调制波函数表达式。针对三端输出3-2 MC拓扑结构下扇区划分数量较多的问题,提出了对原有扇区划分的简化方法。基于该扇区划分原则改进了原有空间矢量调制策略,推导了占空比表达式,给出了该调制策略下的开关函数矩阵,详细分析了系统最大电压利用率。为获得良好的动态响应性能,通过建立dq坐标轴下3-2 MC的信号模型,提出了基于输出侧电流加权合成反馈的双闭环控制策略。通过实验验证了理论分析的正确性和所提控制策略的可行性。  相似文献   

12.
两级式单相逆变器二次纹波电流的抑制与动态特性的改善   总被引:2,自引:0,他引:2  
两级式单相逆变器的瞬时输出功率以两倍输出频率脉动,使得前级DC-DC变换器和输入源产生二次纹波电流。前级DC-DC变换器采用电压电流双闭环控制能有效抑制二次纹波电流,但要求电压外环的截止频率很低,这将导致负载跳变时系统动态特性较差。从阻抗的角度出发,分析电感电流内环抑制前级DC-DC变换器和输入源中二次纹波电流的机理;提出在前级DC-DC变换器中引入含有两倍输出电压频率陷波器的负载电流前馈,该方法可在不增大二次纹波电流的情况下,显著改善负载跳变时的动态特性;最后,通过实验结果证明所提出的控制策略的有效性。  相似文献   

13.
提出了一种基于前馈控制的双有源桥DAB(dual active bridge)变换器的控制策略,并通过小信号模型分析了DAB变换器的输出阻抗及其对电路动态特性的影响。DAB变换器的输出阻抗不仅取决于输出电容,还与控制回路的增益有关。由于传输延迟和零阶保持器的存在,控制回路的交叉频率和增益不能选得过高。如果输出电容非常低,变换器无法实现快速动态响应。为了提高动态性能,根据期望的输出电流,提出了一种新的前馈控制策略。前馈路径只与负载电流有关,而对于输出电压是独立的,且前馈控制在实时计算中易于实现。这种具有前馈控制策略的闭环增益与单电压闭环控制的比较结果表明,采用前馈控制的控制回路具有较好的动态性能。最后,搭建了1 kW的实验样机,验证了所提控制策略的有效性。  相似文献   

14.
针对航天用电源控制器(PCU)系统中的模块组成部分和运行特点,详细分析了PCU系统中顺序开关分流调节器(S3R)的运行模式和对母线电压的影响。当S3R调节母线电压时会产生由滞环控制引起的不定频率的母线纹波,造成了以母线作为输入的蓄电池充电模块(BCR)的输出侧产生同频率的电压电流扰动。本文推导了DC-DC变换器在引入前馈控制以消除前向通道音频敏感率时,前馈控制器所需要满足的一般条件,根据BCR输出侧连接蓄电池,输出电压会随着充电过程变化的特点,提出了一种基于Buck变换器作为BCR模块时,能够跟随蓄电池电压变化自适应改变前馈控制器增益的控制方法,以实现BCR模块输出侧在全电压范围内对输入电压扰动进行抑制,实现对蓄电池充电电流脉动控制的最小化。  相似文献   

15.
针对采用双电压合成控制的矩阵变换器(MC),研究设计一种新型闭环控制策略。该闭环控制策略依据双电压控制的MC占空比计算特性,计算得到理想输入电压占空比与等效输入电压占空比的偏差,将计算得到的电压占空比偏差作为闭环系统的负反馈变量加到下一个占空比计算周期内,以此达到闭环控制的目的。利用提出的闭环控制策略,解决MC输出侧电压性能受输入侧电压畸变以及MC内部器件性能不理想等因素的影响,保证MC的实际输出电压更好地达到期望电压,改善其受到扰动后输出电压质量降低情况,提高输出性能。实验结果表明:采用此新型闭环控制方法的MC输出电压更加接近期望电压,输出电流波形更加平滑,输出电压质量更加理想。  相似文献   

16.
针对双有源桥式(Dual Active Bridge,DAB)变换器系统受到扰动时动态响应速度慢,基于微分平坦理论,结合单移相控制,提出了一种平坦控制策略。设计DAB变换器平坦控制系统,包括前馈控制和非线性误差反馈控制两部分:前馈控制利用期望输出来规划状态变量轨迹;非线性误差反馈对平坦输出进行校正,消除误差。证明了平坦控制的稳定性,最后在仿真平台上分别对DAB变换器平坦控制和PI控制进行仿真,结果表明:在DAB变换器输出电压给定值改变、输入电压波动以及负载突变时,平坦控制策略下DAB系统可以更快达到输出稳定,系统具有更好的动态性能。  相似文献   

17.
电流源在电池充电系统中有着广泛的应用,而变换器的动态特性是能量转换系统的一个重要指标。该文以双向有源型全桥DC-DC变换器作为研究对象,以单相移控制为例,以提高变换器工作在电流源模式时的动态性能为目标,提出一种基于输入电压前馈的输出电流控制方法。并且分析该方法对电感参数的依赖性以及控制系统的稳定性。最后在基于TMS20F28335控制器的实物试验台上对所提出的基于输入电压前馈的输出电流控制方法和传统输入电压前馈控制进行对比验证。实验结果表明:在输入电压突变时,输出电流基本保持不变,显著的提高了变换器对输入电压变化的动态性能;在负载突变和给定突变时,变换器的响应速度是传统输入电压前馈控制的2倍,并且对电感参数偏差不敏感。  相似文献   

18.
针对双有源全桥DC-DC变换器的电流应力大、动态性能差问题,在三重移相控制的基础上,结合电流应力优化方案,提出了一种模型预测及负载电流前馈控制的方法.首先,通过电流应力优化方案对传输功率进行分区,并引入负载电流前馈控制优化内移相角;其次,通过变换器输出电压预测模型优化外移相角,使电流应力减小,提高变换器应对输入电压及负...  相似文献   

19.
建立了三电平直流变换器的混杂自动机模型,并提出了相应的闭环控制算法,算法核心是使系统进入周期循环稳定的工作中并对输出电压进行调节,能够同时满足电感电流连续模式和不连续模式,具有宽负载范围。将输出电压稳压调节问题转化为离散状态转换条件选择问题,推导了离散状态转换条件。使用Matlab/Simulink中的状态流程图实现了基于混杂自动机的三电平直流变换器控制系统,并进行了详细的仿真以检验闭环控制算法的正确性。仿真结果表明,三电平直流变换器在4种工作模式下稳态性能均良好,模式切换过程中动态响应快超调小。  相似文献   

20.
当光伏发电系统的直流变换环节采用多相并联拓扑结构时,存在光伏电池输出电压变化导致并联系统的相数调整电流发生偏移,系统运行效率降低的问题,为此提出一种基于变换器效率模型的相数调整电流修正算法。以Boost变换器为例,建立Boost变换器的效率模型,推导出系统整体效率优化的相数调整电流;分析输入电压变化对相数调整电流的影响;根据效率模型的模型参数,给出针对输入电压变化的相数调整电流修正算法,并分析了修正算法的误差来源及其影响程度。仿真和实验结果表明,与不考虑光伏电压变化的相数调整策略相比,采用修正算法的相数调整策略可以有效提高并联系统运行效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号