共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
为建立国家法定电压基准,中国计量科学研究院(NIM)对1-V和10-V约瑟夫森串联结阵电压标准进行了研究。其中结阵分别是由德国的PTB,日本的ETL,美国的NIST和韩国的KRISS提供的。采用的微波源是一个锁定到10MH_z频率标准上的高稳定高功率的85GH_z的G_aA_s耿氏管振荡器。所获得的1_v和10-V电压的总不确定度分别是9E-9和6E-9。 相似文献
3.
4.
根据SNS型双路约瑟夫森结阵的驱动原理以及结阵分段特点,提出了平衡三进制驱动算法,实现了双路约瑟夫森结阵偏置状态的快速计算。根据约瑟夫森结阵的偏置状态以及组合方式,采用节点电压法,准确合成了双路阶梯波交流量子电压的台阶电压值,最终实现了最小分辨率为2个结,有效位为15位的交流量子电压输出。双路交流量子电压互测实验结果表明,合成交流量子电压的最大误差为0.06 μV,双路信号同步性测试实验中,两个通道的相位差为-0.01 μrad,证明了合成双路交流量子电压具有较高的幅值准确度和相位同步性。 相似文献
5.
6.
7.
8.
针对目前逐渐增多的芯片测试需求,设计了双通道约瑟夫森结阵测试系统,包括低温测试探杆、微波传输结构等关键部分。测试系统可实现对两个可编程约瑟夫森结阵器件进行同时测量,还可以实现两个芯片的叠加电压输出,通过对一个双通道可编程器件的测量验证了测试系统的上述功能。所测器件的最佳工作频率为17GHz,在未加功率放大器的情况下工作功率为11 dBm。双通道小电压可编程约瑟夫森结阵器件最小结阵为1个结,输出电压为35.15μV;最大结阵为512个结,输出电压为17 998.42μV,量子电压台阶的展宽范围为2μV,这是由于34 420A(1 V档)噪声和测试系统噪声导致,满足量子电压测试需求。双通道的量子电压单结叠加输出为70.30μV,512个结叠加输出为35 996.84μV,叠加后量子电压台阶的展宽范围也在2μV以内,证明双通道约瑟夫森结阵测试系统不仅能对两个独立可编程芯片进行测量,还能够实现量子电压叠加输出功能,在不增加工艺难度的前提下,实现了更大量子电压的输出。 相似文献
9.
通过溅射Nb膜张力与氩(Ar)压强的关系,超导转变温度Tc,室温阻抗与液氮温度阻抗比RRT/RLN2,沉积中Ar浓度CAr与负偏压关系的测量和扫描电子显微镜的观察分析,对约瑟夫森结Nb电极作了研究。发现Ar压强在1.1Pa时,Nb膜呈现无应力状态;低负偏压下沉积的Nb膜晶粒结构是由致密膜到圆柱状。在偏压Ub=-50V时,获得表面致密均匀、晶粒结构合适的Nb膜。对Nb膜用阳极氧化电压谱图(AVS)分 相似文献
10.
通过溅射Nb膜张力与氩(Ar)压强的关系,超导转变温度Tc,室温阻扰与液氮温度阻抗比RRT/RLN2,沉积中Ar浓度CAr与负偏压关系的测量和扫描电子显微镜的观察分析,对约瑟夫森结Nb电极作了研究。发现Ar压强在1.1Pa时,Nb膜呈现无应力状态;低负偏压下沉积的Nb膜晶粒结构是由致密膜到圆柱状。在偏压Ub=-50V时,获得表面致密均匀、晶粒结构合适的Nb膜。对Nb膜用阳极氧化电压谱图(AVS)分析,证实沉积的Nb膜内不存在氧化物、寄生结和分层界面。 相似文献
11.
基于约瑟夫森量子电压标准设计了交流功率差分测量系统。通过分析差分采样系统的误差分布及误差传递函数,提出换向差分测量方法,减小了差分采样系统的增益误差,提高了电压幅值测量准确度;通过分析衰减系数η,证明了采用换向差分测量较容易实现10-7量级电压幅值测量。通过评估差分采样系统零相位,结果证明了差分采样系统具有较好的相位测量稳定性。分析了交流功率差分测量系统的不确定度分量,评估了功率因数为1.0,0.5 L和0.5 C时的功率测量不确定度,通过与国家交流功率基准装置进行实验比对,证明了基于约瑟夫森量子电压交流功率测量系统不确定度评估的合理性。 相似文献
12.
本文介绍了交流约瑟夫森电压标准系统的性能。该系统是一种新型的交流量子电压计量装置,用于校准常用的直流和交流电压标准。通过测试几个福禄克5700A系列校准器,其电压为10V,频率是1k Hz了解到该系统在工业环境中的性能和操作方法。交流电压标准的测量不确定度小于1×10-6 相似文献
13.
15.
16.
17.
18.
19.