首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
对于柔性直流工程,分别采用两电平换流器、三电平换流器、MMC换流器方案等进行了初步设计。对不同方案的功率器件最小级联数进行计算,并对各方案的主要性能,比如:交流谐波、直流谐波、损耗特性、冗余特性、器件数量、技术风险等方面进行分析比较,推荐优先采用MMC换流器方案。  相似文献   

2.
为了实现柔性输电工程的系统效率评估计算和换流器散热设计,模块化多电平换流器(MMC)的损耗计算非常重要。为此提出了一种MMC损耗的数字计算方法,通过在数字计算程序中复现出一个工频周期内各开关器件脉冲波形和各开关器件的电压波形和电流波形,并根据器件的关键参数得到各开关器件的损耗。利用所提方法可设计专门的计算程序,对基于MMC的柔性直流输电系统在全运行工况的损耗进行了详细的分析计算,并分析了各器件的损耗特性及其差异,以及开关频率和2倍频环流对换流器损耗的影响。  相似文献   

3.
电网异步互联和可再生能源装机容量增加的现实需求,推动柔性直流输电系统已经达到3000MW的级别。当前,受功率半导体器件发展水平所限,需要设计组合式模块化多电平换流器(MMC)拓扑实现柔性直流输电系统的扩容。但是,不同组合方式下系统参数设计以及所适用IGBT器件类型差异很大,这对多变量下的组合式换流器损耗特性研究提出了挑战。本文首先提出了一种单台MMC的损耗计算方法,然后推导了组合式MMC的损耗计算解析表达式。在此基础上,对比分析了采用4500V/1500A和4500V/3000A IGBT器件的情况下,四种适用于±500kV/3000MW柔性直流输电换流器的组合式MMC拓扑损耗特性。PSCAD/EMTDC仿真结果表明,四种拓扑中并联式MMC拓扑的损耗最小,验证了损耗特性分析的正确性。  相似文献   

4.
模块化多电平换流器(MMC)是目前比较主流的柔性直流输电换流器结构之一。柔性直流输电换流站损耗中换流器损耗占主要部分,详细分析换流器的损耗特性对于系统设计、冷却装置选型以及探求降损方法都有着重要意义。通过分析MMC各开关器件的工作特性,考虑结温、死区时间、驱动电阻等对换流器损耗的影响,提出了一种基于曲线拟合理论的MMC损耗计算方法,并编制了基于Matlab的损耗计算程序,最后通过算例对MMC损耗进行了定量分析,并对各因素对MMC损耗的影响特性进行了分析。  相似文献   

5.
本文通过分析IGBT直接串联两电平电压源换流器(2L-VSC)和模块化多电平换流器(MMC)的经济性差异,为特定工作条件下柔性直流输电系统换流器的选型提供理论依据。对比了两种换流器的结构差异,详细分析两种换流器的主电路器件参数设计方法和损耗计算方法,在此基础上提出了合适的换流器经济性评估指标,对IGBT直接串联两电平换流器和模块化多电平换流器的经济性进行定量对比分析。结果表明在35kV及以下工作场合,IGBT直接串联两电平换流器比模块化多电平换流器经济性更好。  相似文献   

6.
模块化多电平换流器(MMC)避免了器件直接串联,大幅降低了器件开关频率,成为柔性直流输电和基于全控器件的新型高压FACTS装置采用的最主要拓扑。MMC换流器因其制控制方式多采用最近电平逼近方式,其开关规律难以准确表达,导致其损耗分析困难。在此提出一种损耗分析方法,该方法综合考虑影响损耗各因素,绘制了损耗随各因素变化总表,与仿真计算相结合,通过查表来计算MMC损耗,既实现了MMC损耗分析与控制方式解耦,又满足了仿真对算法快速性要求。结合算例,对该方法对MMC损耗特性进行了计算,并给出相应的分析。  相似文献   

7.
采用不同子模块的MMC-HVDC阀损耗通用计算方法   总被引:1,自引:0,他引:1  
针对模块化多电平换流器型高压直流输电系统(MMC-HVDC)提出了一种阀损耗通用计算方法,可统一分析现有子模块结构:半桥子模块、全桥子模块和箝位双子模块。首先基于系统运行参数和调制控制策略解析出各子模块元件的电流、电压时域变化波形,然后利用厂商提供的特性曲线对半导体器件特性参数进行拟合,最后结合器件电流、电压波形和开断次数计算其损耗和结温。所提方法能够计及优化电容电压附加控制,且便于编程实现。基于所提方法开发了MMC-HVDC阀损耗通用分析程序,可快速计算各种工况下的换流器功率损耗分布和器件结温。通过算例计算验证了所提方法的有效性。算例结果表明:3种典型MMC拓扑中H-MMC损耗最少,C-MMC次之,F-MMC最差;环流抑制后个别运行工况下换流器损耗特性可能恶化;降低器件开关频率和提高电压调制比均可降低损耗;当器件开关频率低于某特定值(本算例为500 Hz)后,器件的通态损耗成为主导分量。  相似文献   

8.
对适用于柔性直流输电的模块化多电平换流器(MMC)桥臂电流在子模块(SM)内部功率电路中的分配关系进行数学分析,提出SM平均状态方法,建立SM平均开关模型,推导出SM内部平均状态电流的数学解析表达式,得出SM离散电流的主要谐波成分及幅值,并进一步分析了换流器分别在有功和无功运行工况下SM电流的分配关系。试验结果表明,以上分析方法准确可行,该方法可有效应用于MMC柔性直流输电换流器阀SM的器件选型、损耗计算及热设计的理论指导。  相似文献   

9.
模块化多电平换流器(MMC)因具备模块化、调度灵活等优势得到广泛应用.然而,逆变工况下,MMC子模块上下管绝缘栅双极型晶体管(IGBT)的损耗分布不一致,导致子模块内各器件的寿命差异大,而系统可靠性取决于寿命最低的器件,因此,子模块器件的可靠性将严重威胁到换流器的安全可靠运行.为此,文中提出了一种MMC子模块IGBT损耗优化控制策略.所提策略可以在不影响输出外特性的同时,改善子模块内部器件的损耗分布,提高系统的可靠性.具体而言,分析了模块内部损耗不平衡产生的机理,并通过在调制信号中叠加修正量的方式,减小子模块上下管IGBT的损耗偏差,实现了结温均衡.最后,通过损耗优化的数学证明及热-电联合仿真和器件寿命计算,验证了损耗分析的正确性及所提损耗优化控制策略的可行性.  相似文献   

10.
屠卿瑞  徐政 《高电压技术》2012,38(6):1506-1512
为了计算模块化多电平换流器(modular multilevel converter,MMC)的半导体器件在实际工作结温下的损耗,提出了基于结温反馈方法的MMC损耗计算方法。根据供应商数据及仿真得到的换流器实时电压电流值,在PSCAD/EMTDC中建立了考虑结温变化的损耗计算模块,分析了MMC子模块各部分的通态损耗和开关损耗。同时给出了不同散热器温度下MMC一端换流站的阀损耗比例。计算结果表明,由于器件的实际工作结温往往低于标准结温,因此采用结温反馈后计算得到的换流阀损耗值小于采用恒定结温方法得出的结果。同时证明了MMC的开关损耗较小,在不计吸收电路及驱动电路损耗的前提下,其单站阀损耗占额定直流功率的比例可以下降至<1%,这与二电平和三电平电压源换流器拓扑相比有明显的下降。  相似文献   

11.
基于模块化多电平换流器的直流输电(modularmultilevel converter based HVDC,MMC-HVDC)阀的损耗研究目前还没有。由于MMC阀拓扑的特殊性,传统晶闸管和绝缘栅双极晶体管串联阀换流器的损耗计算方法均不能直接应用,文章结合其子模块特有的半导体器件的开关特性,分析了MMC子模块投入和切除的具体物理过程;结合换流器拓扑结构和面积等效调制算法,推导了典型工况下MMC阀的损耗与阀电压、电流、调制算法的关系,为MMC-HVDC输电系统的降损设计提供了依据。  相似文献   

12.
详细分析换流器的损耗特性对于系统设计、冷却装置选型都有着重要意义。文中基于全桥子模块的工作特性,对六角形模块化多电平AC/AC换流器(Hexverter)的子模块损耗分布及换流器的总损耗进行分析计算。首先,简要介绍和仿真验证了Hexverter的工作原理。然后,通过提取绝缘栅双极型晶体管(IGBT)模块的数据进行拟合,建立IGBT及其续流二极管的通态特性和开关特性参数,进而对子模块工况进行详细分析,根据全桥子模块的输出特性推导出各器件导通范围及导通时间的解析表达式,从而得到通态损耗和开关损耗的理论计算表达式。最后,通过10 kV系统算例对换流器损耗进行了定量分析,对支路内不同子模块的损耗分布和不同工况下Hexverter的损耗进行计算,结果表明全桥子模块内部的损耗分布呈现对称性外,同一支路内各子模块损耗也不尽相同,特别是在不同容量及功率因数的工况下,子模块损耗分布及换流器总损耗存在明显差异。  相似文献   

13.
为了便于对换流器的实际运行状态及冷却系统设计进行评估,提出了一种换流器损耗计算方法。首先,分析了子模块各开关器件的投切状态及电压波形与电流波形;其次,根据器件的特性参数得到了各开关器件的损耗;最后,利用所提损耗计算方法,对实际运行工况下的换流器损耗进行分析计算,并与冷却系统的实测损耗数据进行比较,结果表明所提计算方法有效可行。  相似文献   

14.
针对现有模块化多电平换流器(MMC)阀损耗计算方法无法兼顾准确度和计算速度,仅使用数据驱动算法又会导致机理不明、可靠性低的问题,提出了一种基于机理模型和数据混合驱动的MMC阀损耗计算方法。该方法物理过程明确,充分利用了现场数据隐含信息,能够快速准确计算不同工况、不同控制策略下的阀损耗。首先推导了MMC阀损耗的计算公式,并引入热电类比模型,获得了不同冷却水温下的阀损耗理论计算结果。然后,结合全连接神经网络,利用实际MMC换流站数据对理论结果进行了修正。最后,以某MMC换流站实际工程作为算例,利用该工程实际参数和现场数据,对所提出的计算方法进行验证,证明了该方法的有效性和准确性。  相似文献   

15.
针对SVPWM(空间矢量脉宽调制)技术难以应用到多电平MMC(模块化多电平换流器)控制领域的难题,提出了一种适用于任意电平MMC的SVPWM方法。该方法将MMC等效看作N个二极管钳位型三电平换流器的串联,并基于自动控制等效变换原理和载波移相技术,利用单个三电平SVPWM生成模块实现了任意电平MMC的SVPWM。最后,在仿真软件中构建了基于MMC拓扑结构的五电平SVG(静止无功发生器)模型,仿真结果表明该方法简单通用,可以实现任意电平MMC的SVPWM。  相似文献   

16.
柔性直流输电一般采用模块化多电平换流器(MMC),换流器损耗是衡量柔性直流输电系统的重要指标之一。推导了MMC子模块的通态损耗解析表达式、开关损耗解析表达式。从表达式可以看出,换流器损耗不仅与MMC子模块数量有关,还与柔性直流输电系统的容量、电压等级有关。详细分析了柔性直流输电系统容量与电压等级对换流器损耗的影响规律,得出了保证损耗最低的换流器输电电压等级的选取方式。仿真算例表明,采用所提方法确定的电压等级可以保证MMC换流器具有更低的损耗。  相似文献   

17.
直流融冰装置是电网应对冰雪灾害的重要设备,传统晶闸管器件的直流融冰技术存在无功消耗高、谐波含量大等问题,而基于全控器件的融冰技术存在装置容量和经济性不足问题。为发挥2种融冰装置自身优势,设计了一种由电网换相换流器(line commuted converter, LCC)和模块化多电平换流器(modular multilevel converter, MMC)共同组成的混合型直流融冰装置,其中MMC换流器采用全桥子模块和半桥子模块混合结构。依据不同线路长度和覆冰工况需求,设计了直流融冰装置工作模式的切换方案与协调控制策略;同时,设计了提高装置利用率的复用功能模式。通过MATLAB/Simulink仿真平台构建了LCC-MMC混合型直流融冰装置模型,对不用工况进行直流侧融冰能力及交流侧电流特性的仿真,结果表明,装置具有无功补偿、谐波抑制、融冰电流高等优点。  相似文献   

18.
模块化多电平换流器损耗与结温的解析计算方法   总被引:2,自引:1,他引:2  
正常运行时模块化多电平换流器(MMC)子模块的电容不断被充电/放电。为保持电容电压平衡,各子模块投入/切出状态随机,导致MMC损耗计算的复杂度很高。文中引入了桥臂子模块投入占空比的概念,在整个功率运行区间内分析推导了子模块中4个开关器件通态电流平均值与有效值的解析表达式。在此基础上,综合考虑电容电压与门极电阻等参数的影响,推导了通态损耗与开关损耗的解析表达式。针对平均结温并不能真实反映开关器件实际工作状态的问题,详细分析了每个工频周期内开关器件结温波动特性,提出了一种最大运行结温的估算方法。算例分析表明,损耗与结温计算结果与MMC运行特性完全一致,该解析计算方法简便有效。  相似文献   

19.
易杨  叶荣  林章岁 《电力建设》2016,37(6):125-133
开展针对基于模块化多电平换流器的高压直流(modular multilevel converter based high voltage direct current,MMC-HVDC)输电系统的损耗研究,对高压直流输电系统的设计与优化具有重要意义。提出一种基于模块化多电平换流器的高压直流输电系统损耗计算的实用方法。首先,根据MMC-HVDC输电系统的拓扑结构和器件参数建立MMC-HVDC输电系统及其各个器件的损耗计算模型,并通过仿真计算精确求解MMC-HVDC输电系统及其器件不同运行工况的损耗系列数据;然后再利用数据拟合的方法得到便于工程应用的损耗计算公式;最后,针对厦门柔性直流输电系统工程,采用本文方法求得损耗计算公式,并与实测结果进行了对比分析。分析表明,利用该损耗拟合公式计算和评估MMC-HVDC输电系统的损耗可满足工程精度要求。  相似文献   

20.
模块化多电平换流器不平衡环流抑制研究   总被引:3,自引:0,他引:3  
为抑制三相电压不平衡工况下模块化多电平换流器(MMC)内部三相环流,首先对不平衡工况下的MMC进行功率分析和网络分解;然后提出了通过控制换流器出口侧有功功率恒定将4个MMC序分量网络简化为正序网络和负序网络。接着对负序网络中三相环流的产生机理和动态特性展开分析,并提出了通过正序倍频旋转变换将负序网络三相环流转换为直流分量的方法。最后结合已有文献中关于正序环流特性和抑制控制方法的结论,得到了一种基于双同步旋转坐标变换的MMC不平衡环流抑制控制器设计方法。对61电平MMC的仿真分析,证明了提出的环流抑制控制策略在不平衡工况下既可保证MMC的正常运行,又可以在不增大桥臂限流电抗大小的前提下,有效地抑制内部环流。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号