首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
张广建 《中外能源》2012,17(10):66-69
我国国Ⅲ标准柴油要求硫含量小于350μg/g,国Ⅳ标准柴油要求硫含量小于50μg/g。洛阳石化增上的2.6Mt/a柴油加氢装置,采用抚顺石油化工研究院(FRIPP)新开发的FH-UDS催化剂。该催化剂加氢脱硫和加氢脱氮活性高,对原料适用性强,可以在较高空速、较低氢油比条件下加工各类柴油原料,生产硫含量小于350μg/g的柴油产品,若调整工艺条件,亦可生产硫含量小于50μg/g的低硫柴油,是生产低硫柴油的理想催化剂,尤其适合处理以直馏柴油为主,掺炼二次加工柴油的混合原料。洛阳石化2.6Mt/a柴油加氢装置运行结果表明:原料和操作条件达到设计要求;在反应压力为7.55MPa、体积空速为2.42h-1、平均反应温度为365℃、氢油体积比为386.9等工艺条件下,加工焦化柴油、直馏柴油、催化柴油和焦化汽油等混合原料,生产出硫含量小于350μg/g的清洁柴油。  相似文献   

2.
随着炼厂原油劣质化程度的加剧及重油转化深度的提高,柴油加氢装置原料中高硫、低十六烷值的催化柴油所占比例逐渐增加,降低催化柴油的硫含量、提高其十六烷值指数是我国石油加工工业不得不面对的问题。加氢改质仍是炼厂目前加工催化柴油的最有效手段,根据原料性质选择适宜的加氢改质催化剂体系,在全面提升柴油质量的同时实现经济效益最大化至关重要。广西石化2.0Mt/a柴油加氢改质装置以直馏柴油和催化柴油比例为1∶1的混合物为原料,采用KF848和KF1022专有加氢催化剂,生产满足国V车用柴油标准的调和组分。装置于2014年7月一次开车成功,并于2015年4月对装置进行标定。对装置满负荷标定结果表明,加工后改质柴油产品密度降低40kg/m~3,十六烷值指数提高9.8个单位,总液体产品收率为100.75%(质量分数),改质柴油收率为98.61%(质量分数),石脑油收率为2.14%(质量分数),柴油产品硫含量小于5μg/g,氮含量小于1μg/g,作为调和组分满足全厂柴油达到国V车用柴油质量标准要求。  相似文献   

3.
锦西石化100×104t/a柴油加氢改质装置装填保护剂FZC-100、FZC-105、FZC-106,以及加氢精制催化剂FF-36和加氢裂化催化剂FC-50。其中,FF-36催化剂以钼、镍为活性组分,以纳米C等多种助剂改性的氧化铝为载体;FC-50催化剂以钼、镍为活性组分,以高结晶度、高硅铝比的改性Y型分子筛为主要酸性组分,以碳化法硅铝为主载体。装置开工催化剂采用二甲基二硫(DMDS)作为硫化剂进行干法硫化,选用低氮油-直馏柴油进行钝化,不用无水液氨,过程容易控制,既节省资金和人力,又简化开工方案。工业应用表明,FF-36催化剂加氢活性好,脱硫、脱氮率高,装置过程产品柴油和石脑油的硫含量和氮含量都在10μg/g以下,能生产硫含量达到国Ⅴ标准的清洁柴油和质量良好的石脑油;FC-50催化剂通过调变裂化功能来减少过度裂解,有效避免二次裂解,干气、石脑油产率低,柴油收率高,中油选择性较强,柴油色度≤0.5,十六烷值较原料提高12个单位以上,改质性能较好,满足产品质量要求。  相似文献   

4.
《中外能源》2006,11(5):64-64
为适应原油结构的调整和汽油产品质量升级的需要,九江石化依靠科技进步,继Ⅱ加氢装置在高空速下生产出欧Ⅳ标准柴油,实现加氢技术领域高端突破后,该厂再接再厉,与抚顺石油化工研究院共同对Ⅰ柴油加氢精制装置进行全馏分催化汽油选择性加氢脱硫工艺改造(简称FRS工艺),硫含量降至200μg/g左右,辛烷值损失仅2个单位左右,填补了中国国内全馏分催化汽油选择性加氢脱硫工艺这一技术领域空白。  相似文献   

5.
随着柴油排放标准日益严格,柴油质量升级步伐加快,超低硫清洁柴油需求增加。为了能够及时向市场全面供应符合要求的产品柴油,济南石化于2015年10月对800kt/a柴油加氢改质装置进行了国Ⅴ标准柴油的试生产。根据原料性质、工艺参数、产品质量、物料平衡及产品分布情况,对柴油产品硫含量的影响因素,如原料性质、加氢反应温度、循环氢硫化氢含量等进行了逐一分析。调整期间,采取优化原料、提高加氢反应温度等措施,通过标定最终得出结论:装置在现有催化剂和允许的操作条件下,可以生产国Ⅳ标准柴油,但无法生产硫含量小于10μg/g的国V标准柴油。原因在于:催化剂装填量偏小;循环氢中的硫化氢含量较高;高压换热器存在微量泄漏现象。针对这些原因,提出改造建议:增上一台加氢反应器,更换新型催化剂,增上一套循环氢脱硫设施,更新加氢反应换热器。计划于下次大检修时实施,以确保提供国Ⅴ标准柴油。  相似文献   

6.
催化裂化轻循环油(LCO)因高芳烃、低十六烷值,性质较差,目前在我国LCO主要用于生产柴油调和组分或直接作为燃料油,无法满足油品升级和目前环保指标的要求。为了更好地适应市场变化,缓解柴油库存压力,洛阳石化采用催化柴油加氢处理-催化裂化组合工艺(LTAG)技术对柴油加氢和II套催化进行了改造。与LTAG技术投用前相比,在大幅压减催化柴油的基础上,目的产品(液化气和汽油)的产品分布和质量得到了改善,催化汽油辛烷值提高,烯烃大幅下降,芳烃含量大幅升高,满足了油品升级和环保指标的要求。此外,通过对比LCO加氢深度对催化裂化反应的影响发现:若想获得低成本、高收率、高辛烷值的汽油,必须合理控制副反原料LCO的加氢深度,即加氢必须保持高的多环芳烃饱和率以及高的单环芳烃选择性,要尽可能将多环芳烃选择性地加氢饱和为单环芳烃。  相似文献   

7.
随着车用柴油的排放标准日益严格,炼油厂面临着柴油质量升级问题,主要指标是降低硫含量(≤10%)、提高十六烷值(≥49%)、降低稠环芳烃含量(≤11%)。惠州炼化2.0Mt/a焦化汽(柴)油加氢精制装置生产的精制柴油占全部柴油产量的40%左右,其硫含量偏高(40μg/g左右),改用柴油深度加氢脱硫催化剂FHUDS-6,以生产国Ⅴ标准柴油。对使用该催化剂的满负荷标定数据进行分析。加氢精制反应器第一、二床层装填再生后的精制剂FH-40C,第三床层装填催化剂FHUDS-6。装置标定结果表明,FHUDS-6催化剂具有良好的加氢脱硫活性和稳定性,在氢分压7.6MPa、氢油体积比590、加氢保护反应器反应床层平均温度332.7℃、加氢精制反应器反应床层平均温度365℃、加氢保护反应器空速1.746h-1、加氢精制反应器空速1.931h-1的条件下,柴油中硫的质量分数为5.2μg/g,十六烷值为54.8,产品质量满足国Ⅴ柴油排放标准要求。  相似文献   

8.
国V柴油质量升级的主要目的是深度降低柴油中的硫含量,进一步提高柴油的十六烷值。对现有的柴油加氢装置进行改造,选用新型加氢催化剂,生产符合国V质量标准的油品是炼油企业应对国V质量升级的有效途径。中国石化长岭分公司1.20Mt/a柴油加氢装置选用FHUDS系列催化剂,设计以巴陵柴油为主,掺炼12.5%焦化柴油,生产满足国V车用柴油标准的调和组分。2017年7月,用纯催化柴油对装置进行了标定。结果表明,在反应器入口温度298℃、反应氢分压4.5MPa、氢油体积比783条件下,其脱硫率达到99.1%,脱氮率达到95.3%,精制柴油十六烷指数提高2.4个单位。改用巴陵柴油做原料,并掺炼部分焦化柴油时,在反应器入口温度340℃、反应氢分压5.3MPa、氢油体积比670的条件下,精制柴油硫含量为3.0μg/g,十六烷值指数为52.3,达到国V车用柴油质量标准要求。  相似文献   

9.
我国成品汽油的主要调和组分有催化裂化(FCC)汽油、催化重整汽油、烷基化汽油、异构化汽油等,其中催化裂化汽油占我国成品汽油的80%以上,而FCC汽油具有高硫含量、高烯烃含量的特点。因此,有效控制催化汽油的硫含量,是控制成品汽油硫含量的关键。中海油惠州炼化分公司为满足全厂汽油升级至国Ⅳ、国Ⅴ标准的要求,新建一套500kt/a催化汽油加氢脱硫装置,该装置采用惠州炼化和北京海顺德钛催化剂有限公司合作开发的"全馏分催化汽油选择加氢脱硫工艺技术",即一段选择加氢+二段选择加氢脱硫工艺,简称CDOS-FRCN。该装置由镇海石化工程股份有限公司(ZPEC)负责工程设计,于2012年2月10日动工,当年12月24日一次开车成功,生产出合格产品。装置标定情况说明,催化汽油经全馏分加氢精制后,加氢精制汽油中,硫的质量分数达到12μg/g,硫醇硫质量分数达到10μg/g,汽油辛烷值(RON)损失小于1.5个单位。CDOS-FRCN技术能够有效降低汽油硫含量,减少辛烷值损失,可为炼油厂生产硫含量小于50μg/g甚至10μg/g的清洁汽油提供经济、灵活的技术解决方案。  相似文献   

10.
当前世界各大炼厂高硫高酸劣质原油的加工量逐步提高,研究高硫原油在全流程中硫的传递和分布对炼厂汽、柴油质量升级改造具有重要意义。通过对某炼化公司加工高硫原油的常减压、催化裂化、焦化、加氢、重整、S Zorb等6套装置的硫含量测定和分析,得到了该炼厂全流程硫的传递及分布规律,绘制了全流程硫的传递及分布图。常减压装置随着馏分变重,硫含量呈增加趋势;催化裂化装置原料和产物的硫含量均较高,干气必须经过脱硫处理后,才能作为各工艺炉和动力锅炉的燃料使用,液化气经脱硫后作为气体分馏原料;催化稳定汽油经S Zorb吸附脱硫达到硫含量符合国Ⅵ车用汽油标准(≤10mg/kg);通过混合加氢工艺去除催化柴油、焦化汽柴油、常压直馏柴油组分油中的硫、氧、氮等杂质,经过进一步分馏获得品质较高的柴油和石脑油。  相似文献   

11.
生产低硫、低烯烃和高辛烷值的清洁汽油,是国家保持能源经济可持续发展的必然要求。由于我国原油组成中重质油比重较大,造成我国80%以上的商品汽油来源于流化催化裂化(FCC)汽油。缘于原油性质和FCC的工艺特点,决定了其产品中硫含量和烯烃含量高,商品汽油中90%以上的硫和绝大部分烯烃均来自于FCC汽油。所以,降低FCC汽油硫含量和烯烃含量是生产清洁汽油的关键。本文分析全馏分流化催化裂化汽油加氢改质前后烃类组成、碳数分布、辛烷值贡献的变化。改质前,正构烷烃含量占汽油馏分的5%~10%(体积分数)左右,异构烷烃含量占汽油馏分的30%(体积分数)左右,烯烃含量占汽油总量的30%(体积分数)以上,环烷烃主要集中在C6~C8之间,芳烃主要分布在C7~C10之间,碳数主要分布在C5~C8之间。改质后,正构烷烃、烯烃含量下降,异构烷烃和芳烃含量上升,总体辛烷值下降,高辛烷值的C5、C6烯烃损失严重。在反应体系中,增加烯烃的骨架异构化,并使其发生氢转移反应,可生成高辛烷值的异构烷烃,避免低辛烷值的正构烷烃生成,同时促进烯烃自身氢转移和烯烃与环烷烃之间氢转移反应,增产芳烃,可以提高改质后FCC汽油的辛烷值,为流化催化裂化汽油加氢改质路线的选择和工艺优化提供理论指导。  相似文献   

12.
清洁燃料F-T柴油在柴油机中应用的研究   总被引:9,自引:2,他引:7  
煤和含碳资源通过F—T合成可以获得十六烷值高、硫和芳香烃含量极低的F—T柴油。综述了F—T柴油的特性及其对排放的影响,并就F—T柴油和常规柴油在柴油机中的燃烧和排放特性进行了比较。与常规柴油相比:F-T柴油的滞燃期缩短了约14%~30%,预混燃烧放热峰值较低,最高燃烧压力略低,法规排放和非法规有毒排放都得到了大幅度降低,其中NOx和PM分别平均降低了13%和26%。因此,F-T柴油是一种优秀的清洁代用燃料。最后指出了F—T柴油在发动机中应用时在润滑性能、低温性能和与浸油弹性体兼容性等方面存在的问题,并探讨了解决途径。  相似文献   

13.
李凤岭  刘恒涛 《中外能源》2010,15(10):72-75
大连石化400×104t/a柴油加氢精制装置在设计上选用了ShellGlobalSolution工艺技术,催化剂为Criterion的DC-2118精制催化剂,为延缓反应器压降上升速度,在反应器顶部采用多种保护剂的级配装填技术,保护剂为834-HC和815-HC。装置初期性能标定结果表明,装置在满负荷运行期间,各设备运转正常,工艺操作指标运行平稳,催化剂性能完全能够满足生产要求。催化剂的脱硫率达到99.55%以上,精制柴油的十六烷值提高了2.9个单位,硫含量在20~40μg/g,满足欧Ⅳ标准中柴油硫含量不大于50μg/g的要求,其他指标也均满足欧Ⅳ柴油排放指标要求;此外,进出装置物料平衡、装置加工损失率也都在设计指标范围内。装置日常运行数据表明,柴油加氢装置可根据市场要求生产不同硫含量的柴油,而且使用DC-2118精制催化剂后无需注入硫化剂,减少了环境污染。  相似文献   

14.
Fuel properties of rapeseed oil and soybean oil methyl esters (e.g. density, cetane number and viscosity etc.) are similar to those of the diesel fuel. These methyl esters can be used as diesel engine fuel by mixing withy diesel fuel. In this study a comparison of diesel fuel, the rapeseed oil methyl ester and the soybean oil methyl ester was made from the engine performance and emissions point of view. The tests were carried out with a four-cylinder diesel engine for tree different injection pressures such as 250, 300 and 350 bar with each of these fuels. For the purpose of comparison, tests were also conducted at full load conditions with diesel fuel. As the result, the performance and emission values of rapeseed oil (R) and soybean oil (S) methyl esters were found to be nearly the same with those of diesel fuels (D) when injection pressure was increased to 300 bar.  相似文献   

15.
李高峰  潘岩  刘帅 《中外能源》2011,16(6):79-83
锦西石化柴油加氢改质装置2009年进行了催化剂更换,选用美国标准公司预硫化催化剂DN200、DN3100,降凝剂为SDD800,裂化剂为Z-5723,保护剂为834HC和814HC。采用干法硫化,因为预硫化催化剂DN200每个颗粒都含有硫,在硫化时不需要另外加注硫化剂,自身携带的硫可完全满足硫化需要,相应的加硫设施也可以省略。催化剂初期活性较温和,不易出现飞温现象,所以可省略普通催化剂开工前的注氨钝化步骤。一年来的运行情况显示,催化剂运行初期,在反应温度较低的情况下即可满足生产需要,催化剂活性很好。柴油硫、氮含量大大降低,平均脱硫率达到97.24%,平均脱氮率达到98.21%。柴油的色度可由原来的3.5降到0.5,外观呈淡绿色。柴油十六烷值平均提高7.9个单位。生产的石脑油,芳潜含量高,是优质的重整原料,可用来生产高辛烷值汽油,石脑油氮含量很低,但硫含量稍高。此催化剂具有良好的稳定性和抗氮性,完全满足装置产品质量的要求。  相似文献   

16.
柴油机燃用液态醚类燃料的探讨   总被引:3,自引:0,他引:3  
研究了液态醚类物质用作柴油机燃料的理化性能和对排放的影响。液态醚类燃料具有很高的十六烷值,其它燃料性能与柴油较为接近,能够显著降低废气中CO和HC,尤其是大幅度减少碳烟及PM排放,与现代常规柴油机燃料系统相匹配,是一类较理想的柴油机含氧燃料。  相似文献   

17.
Results are presented on tests on a single-cylinder direct-injection engine operating on diesel fuel, jatropha oil, and blends of diesel and jatropha oil in proportions of 97.4%/2.6%; 80%/20%; and 50%/50% by volume. The results covered a range of operating loads on the engine. Values are given for the chemical and physical properties of the fuels, brake specific fuel consumption, brake power, brake thermal efficiency, engine torque, and the concentrations of carbon monoxide, carbon dioxide and oxygen in the exhaust gases. Carbon dioxide emissions were similar for all fuels, the 97.4% diesel/2.6% jatropha fuel blend was observed to be the lower net contributor to the atmospheric level. The trend of carbon monoxide emissions was similar for the fuels but diesel fuel showed slightly lower emissions to the atmosphere. The test showed that jatropha oil could be conveniently used as a diesel substitute in a diesel engine. The test further showed increases in brake thermal efficiency, brake power and reduction of specific fuel consumption for jatropha oil and its blends with diesel generally, but the most significant conclusion from the study is that the 97.4% diesel/2.6% jatropha fuel blend produced maximum values of the brake power and brake thermal efficiency as well as minimum values of the specific fuel consumption. The 97.4%/2.6% fuel blend yielded the highest cetane number and even better engine performance than the diesel fuel suggesting that jatropha oil can be used as an ignition-accelerator additive for diesel fuel.  相似文献   

18.
Progress in biodiesel processing   总被引:3,自引:0,他引:3  
Biodiesel is a notable alternative to the widely used petroleum-derived diesel fuel since it can be generated by domestic natural sources such as soybeans, rapeseeds, coconuts, and even recycled cooking oil, and thus reduces dependence on diminishing petroleum fuel from foreign sources. The injection and atomization characteristics of the vegetable oils are significantly different than those of petroleum-derived diesel fuels, mainly as the result of their high viscosities. Modern diesel engines have fuel-injection system that is sensitive to viscosity change. One way to avoid these problems is to reduce fuel viscosity of vegetable oil in order to improve its performance. The conversion of vegetable oils into biodiesel is an effective way to overcome all the problems associated with the vegetable oils. Dilution, micro-emulsification, pyrolysis, and transesterification are the four techniques applied to solve the problems encountered with the high fuel viscosity. Transesterification is the most common method and leads to monoalkyl esters of vegetable oils and fats, now called biodiesel when used for fuel purposes. The methyl ester produced by transesterification of vegetable oil has a high cetane number, low viscosity and improved heating value compared to those of pure vegetable oil which results in shorter ignition delay and longer combustion duration and hence low particulate emissions.  相似文献   

19.
This article gives a condensed overview of Gas-to-Liquid (GTL), Biomass-to-Liquid (BTL) and Coal-to-Liquid (CTL) theory and technology by the use of Fischer-Tropsch (F-T) processes. Variations of the F-T process can be used to tailor the fuel properties to meet end user needs as well as aid vehicle manufacturers in achieving forthcoming emission regulations. They do this by improving engine-out emissions and exhaust gas after-treatment performance. Regardless of feedstock or process, F-T diesel fuels typically have a number of very desirable properties, including a very high cetane number. This review focuses on how fuel properties impact pollutant emissions and draws together data from various studies that have been carried out over the past few years. Reduced emission levels as demonstrated in several publications have been attributed to several chemical and physical characteristics of the F-T diesel fuels including reduced density, ultra-low sulfur levels, low aromatic content and high cetane rating, but not all of them contribute to the same extent to the emissions reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号