首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
惠州炼化500kt/a催化汽油加氢装置采用自主专利技术——全馏分催化汽油选择性加氢技术(CDOS-FRCN)。在生产国Ⅳ标准汽油时,一代技术(CDOS-FRCNⅠ)辛烷值损失几乎为零;但催化剂经再生后生产国Ⅴ汽油时,辛烷值损失最高达2.8~3.2个单位,严重影响装置的运行周期及经济效益。升级改造后的二代技术(CDOS-FRCNⅡ)工艺运行结果表明:在催化汽油硫含量为230~310mg/kg、新鲜进料为50t/h的情况下,生产硫含量≤7.5mg/kg的国Ⅴ汽油时,辛烷值损失在1.7~2.5个单位左右。加氢精制汽油辛烷值提升了0.7~1.5个单位,每年降低汽油调和成本约7500万元。催化剂失活速率由2℃/月降为不大于1℃/月,装置运行周期可有效延长一年以上,满足三年换剂检修的运行目标。全装置C5以上液收可达99.5%,氢耗仅为0.19%,能耗为18.22kg标油/t原料。若进一步降低进料催化汽油中的硫含量,则总辛烷值损失及装置能耗可进一步降低。  相似文献   

2.
炼化企业在催化裂化加工过程中会生产大量的C3馏分,主要成分是丙烯和丙烷。其中丙烯是重要的石油化工基础原料,而丙烷主要作为民用液化气使用,附加值低,造成巨大资源浪费。利用催化脱氢技术,将低附加值的丙烷转化为市场紧缺的丙烯,具有重大的经济效益和社会效益。丙烷脱氢制丙烯技术进料单一,产品单一(主要是丙烯),副产物为氢气,丙烯收率高,是继裂解制乙烯联产丙烯和催化裂化制丙烯之后的第三大丙烯生产路线。介绍了国内外丙烷脱氢制丙烯发展情况,对比了当前丙烷脱氢制丙烯的两大工艺技术——Oleflex工艺和Catofin工艺,表明Oleflex工艺在工艺过程、催化剂组成及活性稳定性、投资等方面具有较大优势。结合洛阳石化1800×104t/a炼油扩能改造工程项目计划和装置特点,对丙烷脱氢制丙烯进行经济分析,提出增上20×104t/a丙烷脱氢制丙烯装置的建议,可消化周边丙烷资源,减轻液化气销售压力,有助于稳定液化气市场,实现丙烷供需双赢。  相似文献   

3.
陈志伟 《中外能源》2012,17(12):94-98
加氢裂化装置副产的富氢气体,氢气纯度为85.41%.原设计改入制气装置作为原料补充,但实际生产过程中,由于富氢气体中硫含量在20~500μL/L之间大幅波动,易造成制氢脱硫反应床层穿透,使转化催化剂发生硫中毒;富氢气体中氢气含量较高,易造成制氢加氢催化剂发生反硫化反应,使加氢催化剂失活.因此将这部分气体改入燃料气系统.结合长庆石化公司生产实际,利用现有生产负荷较低的PSA装置和溶剂再生装置,将加氢裂化富氢气体和重整装置的富氢气体混和后,再经脱轻烃、脱硫预处理,预处理后的富氢气体改进PSA装置提纯出99%(体积分数)的氢气,作为加氢裂化装置的补充氢源.氢气资源得到充分利用,既节约了制氢装置天然气用量,又提高了公司管网燃料气热值,还回收了部分液化气组分和硫磺,降低了环境污染,年实现经济效益600万元.  相似文献   

4.
对生物质流化床快速热裂解-固定床催化重整一体化制氢中有效催化剂的选择及其性能变化进行了研究.选取空白试验、白云石、镍基催化剂进行对比实验.结果表明:高温有利于氢气产率和气相产品气碳元素选择性的提高,镍基催化剂的催化效果明显强于白云石,后者对一氧化碳有较好的选择性.对镍基催化剂的连续催化及循环失活再生研究表明,每次再生后...  相似文献   

5.
崔莉 《中外能源》2013,(12):66-70
随着加工原油质量变重变劣,且环保要求日趋严格,以及市场对优质汽、柴油需求量的增加,炼油厂需要进一步提高加氢工艺装置的加工能力和深度。催化重整装置的副产氢气可为炼油厂加氢精制、加氢改质、加氢裂化等加氢装置提供氢源。催化重整氢气收率与工艺过程类型、原料组成、催化剂类型和操作参数等有关。催化重整工艺过程类型选用连续再生式重整,氢气收率和氢气纯度均比半再生重整高。选用环烷烃含量高的催化熏整原料,有利于提高重整氢的收率,这是由于产生氢气的环烷脱氢反应发生的越多,氢气收率越高。催化重整催化剂选用高选择性、低积炭的催化剂,有利于提高重整氢收率,并可提高催化剂的选择性和寿命。改善重整过程的操作参数(如适当提高反应温度和降低反应压力等),可以提高重整氢收率,但是不推荐采用提高空速和降低氢油比的方法来提高氢气收率。此外,实践证实,从重整原料中脱除大部分c。烃(包括环烷烃、苯和己烷),有利于增加催化重整氢气净收率,同时可以提高汽油收率,增大汽油辛烷值,并降低炼油厂苯的生成。  相似文献   

6.
废加氢催化剂是一种资源,将废加氢催化剂中最有回收再利用价值的一部分通过再生/重生/再利用,是获取经济效益最具吸引力的方法 ,与购买新鲜加氢催化剂相比,可显著节省费用。对比分析两个案例:案例1中使用REACT技术再生的STARS系列加氢催化剂,与常规再生方法相比,活性可提高20%~60%,REACT技术与STAX技术的结合应用,既可降低加氢催化剂装填成本,又可满足装置运转周期和装置性能要求。案例2中,某2.2Mt/a蜡油加氢装置第一运转周期约27个月,使用再生加氢催化剂后,装置第二运转周期约为18个月,均未达到三年一修、三年一换剂的基本要求。案例2中加氢催化剂失活较快的原因是:第一周期原料油中硅含量超标;第二周期使用的再生FF-18加氢催化剂活性不佳,无使用价值。因此,要正确处理废加氢催化剂,应细化管理,分层卸剂、分析评价、级配装填,及早开发加氢催化剂级配预测模型。  相似文献   

7.
《中外能源》2006,11(5):64-64
为适应原油结构的调整和汽油产品质量升级的需要,九江石化依靠科技进步,继Ⅱ加氢装置在高空速下生产出欧Ⅳ标准柴油,实现加氢技术领域高端突破后,该厂再接再厉,与抚顺石油化工研究院共同对Ⅰ柴油加氢精制装置进行全馏分催化汽油选择性加氢脱硫工艺改造(简称FRS工艺),硫含量降至200μg/g左右,辛烷值损失仅2个单位左右,填补了中国国内全馏分催化汽油选择性加氢脱硫工艺这一技术领域空白。  相似文献   

8.
金陵石化公司Ⅲ套柴油加氢装置设计处理量为250×104t/a,原料由直馏柴油、焦化柴油和催化柴油构成,构成比例为直馏柴油占47.6%、焦化柴油占32.8%、催化柴油占19.6%。为应对油品质量升级的要求,2013年3月,该装置更换由抚顺石油化工研究院研发的超深度加氢脱硫催化剂FHUDS-5及FHUDS-6,连续8d试生产3×104t欧Ⅴ标准柴油。与常规FH-UDS、FHUDS-3催化剂相比,FHUDS-5催化剂的加氢脱硫、脱氮活性明显提高,在相同条件下加工同一原料时,所需反应温度低,具有深度加氢脱硫活性好、装填密度低及氢耗低等特点,尤其适合大分子硫化物的脱除,适宜加工高硫柴油馏分原料,生产超低硫清洁柴油;FHUDS-6催化剂为高活性Mo-Ni型,用于加工处理直柴掺兑焦化汽柴油及催化柴油混合油,或单独处理纯催化柴油时,其反应温度比FHUDS-2催化剂降低约10℃,其深度脱硫活性及十六烷值增幅也明显优于FHUDS-2催化剂。结合生产实际,从参数变化、原料性质、产品性质、物料平衡、产品收率、能耗等方面,分析两种催化剂在欧Ⅴ标准柴油生产中的应用。结果表明,FHUDS-5及FHUDS-6催化剂具备加工欧Ⅴ标准柴油的性能,但装置能耗较高,催化剂失活速率加快,精制柴油收率下降。  相似文献   

9.
惠州炼化为了满足全厂汽油升级至国Ⅳ、国Ⅴ标准的要求,新建一套500kt/a催化汽油加氢脱硫装置,该装置采用惠州炼化和北京海顺德钛催化剂有限公司合作开发的"全馏分催化汽油选择加氢脱硫工艺技术(CDOS-FRCN)",由镇海石化工程股份有限公司负责工程设计。工艺运行表明,全馏分催化汽油加氢脱硫工艺流程简单、操作方便、投资省、能耗低,生产国Ⅳ汽油的反应条件温和,辛烷值基本无损失,烯烃收率仅下降2.5%(体积分数),具有较大的优势。利用该工艺生产国Ⅴ汽油时,辛烷值损失较大,在1.8个单位左右,可通过增上第三反应器(加氢脱硫醇反应器)降低反应苛刻度,从而降低辛烷值损失。对于MIP工艺,催化汽油硫含量相对较低,如催化稳定汽油硫含量明显偏高于催化粗汽油,可调整吸收稳定系统操作,解决吸收过度的问题,使催化稳定汽油硫含量在450mg/kg的基础上降低,并稳定在310mg/kg左右,从而降低催化汽油加氢脱硫的苛刻度。  相似文献   

10.
催化选择加氢工艺技术是提纯裂解烯烃最普遍的方法,而碳二加氢精制催化剂是乙烯分离工艺流程的关键技术之一。介绍了国内外碳二选择性加氢精制催化剂的发展现状,包括催化剂的制备工艺、催化剂的载体、活性组分及助催化剂的进展情况。对碳二馏分选择性加氢反应机理进行了探讨,深入分析了空速、反应温度、一氧化碳浓度及氢炔比等因素对催化剂使用性能的影响。提出了碳二加氢精制催化剂的发展方向,一是加强对蛋壳型催化剂的研究,将活性组分钯分布在载体表面壳层,使钯层更薄,提高钯的利用率,使之表现出更好的碳二加氢反应活性和乙烯选择性;二是通过添加其他组分对钯基催化剂进行改性,发展多组分钯基催化剂,以提高乙烯选择性、减少绿油生成量和延长催化剂运行周期。因此,开发出高活性、高乙烯选择性、高空速、低绿油生成量、再生性能更好的非贵金属催化剂具有现实意义。  相似文献   

11.
Catalytic decomposition of methane (CDM) permits obtaining hydrogen in high yields and – what is essential – it does not lead to release of CO2. Unfortunately, most of the catalysts used in this process undergo fast deactivation. Their possible regeneration, consisting in the removal of pore blocking carbonaceous deposit of low catalytic activity, leads to generation of undesirable carbon dioxide. An alternative solution for maintaining high catalyst activity in the CDM reaction can be generation of the catalytically active carbonaceous deposit on its surface. Such a deposit can be obtained by decomposition of different organic substances. This paper reports on methane decomposition carried out in the presence of propylene (used in the concentration of 10 or 20%). The reaction was performed at three temperatures of 750 °C, 850 °C or 950 °C. Three types of activated carbon were tested as catalysts: the first one was obtained by activation of pine wood biomass with Na2CO3, whereas the second and third ones were commercial carbons (WG-12 and Norit RX3 Extra). According to the results, the addition of propylene to the CDM system effectively reduces deactivation of the activated carbon catalysts and permits fast stabilisation of their catalytic activity at a high level.  相似文献   

12.
兰州石化公司炼油厂1.8Mt/a汽油加氢脱硫装置,采用法国AXENS公司的Prime G+固定床选择性加氢脱硫工艺。选择性加氢反应器采用HR-845S催化剂,加氢脱硫第一反应器采用HR-806S催化剂,第二反应器采用HR-841S催化剂,采用的催化剂活度高、选择性和稳定性好,在保证脱硫水平的同时,使辛烷值损失最低。因催化剂对进料杂质的限制,该工艺对原料油过滤精度、缓冲罐气封用气种类,较常规加氢精制装置严格。催化剂器外再生,干法硫化,循环氢系统设置脱硫塔,下游无需设置脱硫醇装置。该工艺的典型控制方案,如循环汽油流量控制、选择性加氢氢油比控制、分馏塔轻汽油抽出双串级控制等成熟可靠。在开工初期原料中的硫含量、烯烃含量较大偏离设计值时,通过调整氢气用量、反应器入口温度、轻重汽油切割点等工艺参数,仍能保证产品的质量指标。  相似文献   

13.
催化重整生成油中富含芳烃和少量烯烃,要想生产合格的芳烃产品,必须脱除其中的烯烃。目前,广泛采用的脱除烯烃的方法是白土吸附和加氢精制工艺。抚顺石油化工研究院开发的FHDO技术,在成功应用于重整生成油苯、BTX等馏分脱烯烃基础上,首次在安庆石化1.0Mt/a催化重整装置混合二甲苯精制单元实现工业化应用。FHDO技术在较低反应温度(120~170℃)、反应压力(1.0~1.8MPa)、反应空速2~4h-1和氢油比(200~500∶1)下,生产出符合GB/T3407—2010的混合二甲苯产品。运行结果表明,HDO-18催化剂具有良好的活性和选择性,适用于催化重整生成油混合二甲苯馏分选择性加氢脱烯烃,FHDO技术可以有效替代常规的白土吸附和加氢精制工艺,从而彻底解决了常规混合二甲苯脱烯烃工艺中白土使用寿命短、需要频繁更换和废弃白土污染环境问题,以及加氢精制工艺在深度加氢脱烯烃过程中,带来的芳烃损失偏高等问题。FHDO技术的成功应用,填补了国内在催化重整生成油混合二甲苯馏分选择性加氢领域的空白,也是今后芳烃脱烯烃工艺的发展趋势。  相似文献   

14.
Because of its ecological character, the reaction of catalytic decomposition of methane (CDM) is expected to be an important future method of hydrogen generation. However, the main drawback of this technology is a relatively fast deactivation of the catalyst used, as a consequence of its pores blocking by the low-active methane-originated carbon deposit. This paper reports on an attempt of restricting the catalyst deactivation by introducing into the reaction system ethyl alcohol capable of forming in situ a potentially active in this reaction carbonaceous deposit. The catalyst used was activated carbon obtained from the waste material (hazelnut shells). The reactions of methane and ethanol decomposition were performed by the alternate method (for certain time methane was introduced into the reactor, and then it was replaced by ethanol). Three temperatures of the reactions were applied (750, 850 or 950 °C) and another variable was the duration of the ethanol decomposition. As follows from the results, an addition of ethanol has diverse effect on the catalytic activity of activated carbon and the amount of hydrogen formed depends on the temperatures of methane and ethanol decompositions and on the time of the reagent dosing.  相似文献   

15.
In this paper spent nickel catalyst (Ni/diatomite) resulting from hydrogenation process of edible oil was regenerated. To reach this aim heat treatments with hydrogen flushing was employed. The impact of particle size, reaction time and temperature on spent nickel catalyst regeneration were studied. The structural characteristics, elemental and chemical analysis of the samples were studied by Fourier transform infrared spectroscopy and X-ray fluorescence. The regenerated catalyst and fresh catalyst were tested in an experimental hydrogenation process. Noticeable regeneration achieved as under; mesh number: 200, time: 1 h and temperature: 450 °C. All Results showed that spent nickel catalyst could be regenerated directly. Through this method no part of the spent nickel catalyst was left in the environment and no reagent was used.  相似文献   

16.
催化剂是燃煤电厂选择性催化还原(SCR)烟气脱硝技术的核心,催化剂的活性和寿命决定了脱硝效率和脱硝成本.针对目前国内燃煤机组脱硝催化剂易失活、更换频率高等问题,通过查阅相关文献对催化剂磨蚀、堵塞、烧结、中毒等四种主要失活现象进行了研究.从四种主要失活现象的微观机理入手进行分析,并结合实际运行经验,总结了不同失活现象产生的原因,提出了在燃煤电厂实际运行中可有效抑制催化剂失活的方法.研究对提高脱硝效率、降低脱硝成本具有一定的指导意义.  相似文献   

17.
The wet impregnation method was used to prepare different ruthenium promoted Ce–Al catalysts. These catalysts were used in the steam reforming of methanol reaction (SRM). The effects of the reaction temperature (200–400 C) and the catalyst composition were studied for optimization reasons. The steam to methanol molar ratio was kept constant (S/M = 2). The promotion of cerium/aluminum oxides with Ru enhanced their catalytic activity. The catalytic test results showed that the Ru/Ce combination was the most beneficial. The synergy between Ru and cerium oxide led to the formation of active sites with excellent redox properties. For high active phase content, the 5 RuCe catalyst exhibited the highest hydrogen production amount with no CO formation. This catalyst was kept under stream for 5 days at 400 C, and no significant deactivation was observed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
在苏丹喀土穆炼厂,为与三期扩建炼油生产能力配套,解决现污水汽提装置处理能力小,净化水质量不合格,侧线抽氨中硫化氢含量高,恶臭气味造成环境污染等问题,新上一套100×104t/a酸性水汽提装置,采用单塔低压全吹出工艺,酸性水储罐罐顶气体采用成套设施脱臭,并采用注碱脱除酸性水中固氨等技术,处理来自延迟焦化装置、焦化汽油、柴油加氢装置、催化裂化装置以及常减压装置的含硫污水,装置所产净化水返回常减压、催化裂化和焦化装置回用,剩余部分送污水处理场。装置应用表明,单塔低压全吹出工艺技术成熟可靠,对原料适应范围宽,脱臭及注碱等技术的应用,提高了净化水的质量指标,使其既能满足下游污水处理厂的要求,又可用于回注。  相似文献   

19.
Catalyst HZSM-5 was used in bio-oil catalytic cracking upgrading. The precursor of coke on the catalyst was analyzed by means of TGA, FTIR and C13 NMR. Precursors of coke deposited in the pore of the molecular sieve were mainly aromatic hydrocarbon with the boiling point range from 350 °C to 650 °C. Those on the outer surface of the pellet precursor were identified as saturated aliphatic hydrocarbons with the boiling point below 200 °C. The activity of HZSM-5 was studied after regeneration. In terms of yield of organic distillate and formation rate of coke, results showed that catalytic activity change moderately during the first three times of regeneration.  相似文献   

20.
Advancements in the catalytic naphtha reforming process, as one of the main processes in petrochemical industry, contributed to development of continuous catalytic regenerative naphtha reformer units. Increasing the yield of aromatic and hydrogen as well as saving the energy in this process through the application of thermal coupling technique is a potentially interesting idea. This novel idea has been assessed in this paper. In the proposed configuration, continuous catalyst regeneration naphtha reforming process is coupled with hydrogenation of nitrobenzene in a two co-axial reactor separated by a solid wall, where the generated heat in nitrobenzene hydrogenation reaction transfers to naphtha reforming reaction medium through the surface of the tube. A steady-state, homogeneous, two-dimensional model is used to describe the performance of this configuration and a kinetic model including 32 pseudo-components with 84 reactions is considered for naphtha reforming reaction. After validating the model with the commercial data of a domestic plant, the obtained results of coupled reactor are compared by the conventional one. The obtained results show the superiority of CCR coupled reactor against the conventional one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号