首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
随着全球对环保要求的日益提高,以R1234yf、R1234ze(E)、R1233zd(E)等为代表的ODP为0且GWP较低的制冷剂得到广泛关注并应用。针对R134a离心式冷水机组,采用CFD数值方法,对采用R1234ze(E)直接替代的离心制冷压缩机进行了模拟,对机组性能进行了比较分析。结果表明:在同一转速下,当冷凝温度较小时,R1234ze(E)机组的制冷量和COP都小于R134a机组的,当冷凝温度较大时,R1234ze(E)机组的制冷量和COP都大于R134a机组的。当R134a机组与R1234ze(E)机组的蒸发温度、冷凝温度和制冷量都相同时,R1234ze(E)机组的COP比R134a机组的COP平均降低了约5.14%。  相似文献   

2.
新型制冷剂R1234ze(E)及其混合工质研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
低GWP值制冷剂R1234ze(E)(trans-1,3,3,3-tetrafluoropropene)作为R134a较为理想的替代品而被关注,但其单一成分的热力学性能和传输特性并不理想,在R1234ze(E)中混入R32成分可以有效改善其热力学性能。本文概述了低GWP值工质R1234ze(E)及其与R32混合物的热物性特征、传输特性及系统运行性能方面的研究现状,并与目前常用的制冷工质进行比较分析,指出R1234ze(E)与R32混合工质有望成为新型低GWP值替代工质。  相似文献   

3.
为了满足逐步严苛的环保法规要求,R1234yf成为车用热泵制冷剂R134a的热门替代制冷剂之一。本文对R1234yf热泵技术的研究进行了综述与分析,其GWP<1,各方面性质均符合车用热泵系统的工作需求。在传热效果上,R1234yf的沸腾传热性能略优于R134a,且冷凝过程压降比R134a低5%~10%,优于R134a系统。在诸多R1234yf和R134a系统的仿真和实验研究中,R1234yf热泵性能略低于R134a,但可以通过优化零部件、强化补气、改善工况等方式使其与R134a十分接近甚至超越。R1234yf低压饱和压力比R134a高约15%,可以适配更高的压缩机转速,低温下制热性能比R134a更好,且较低的压缩机排气温度使系统工作更为稳定,强化补气的效果也优于R134a。因此,R1234yf在车用热泵中具有较好的工作性能和发展前景,可以作为R134a的替代制冷剂。  相似文献   

4.
介绍HFO类制冷剂R1234ze(E)与HFC类制冷剂R134a的基础特性,分别将这2种工质在螺杆式冷水机组上开展制冷循环性能试验,进行整机制冷量、降膜蒸发器传热性能、壳管式冷凝器传热性能及COP等方面的测试。试验结果表明:R1234ze(E)相比R134a样机制冷量有较大的衰减,蒸发和冷凝传热性能均有下降,而整机COP略有提升。指出后续需要针对R1234ze(E)性能衰减、传热能力下降等问题进行深入研究。  相似文献   

5.
由于R1234yf制冷剂具有优良的环保特性,使它成为了R134a的热门替代品之一。针对带补气的两级离心式冷水机组制冷循环系统,探究R1234yf工质替代R134a用于两级离心式冷水机组的可行性以及性能表现。基于热力学基本能量方程及?平衡方程,对相同流量下系统的COP、制冷量、?效率以及各部件不可逆损耗的占比情况进行了理论分析。结果表明:当环境温度为30℃时,相比于采用R134a的系统,采用R1234yf的系统COP降低了2.11%,?效率降低了2.79%。虽然系统性能略有降低,但R1234yf具有更加优良的环保特性,因此R1234yf可以作为离心式冷水机组中R134a的替代制冷剂。  相似文献   

6.
电机冷却是保障气悬浮离心制冷压缩机可靠运行的关键。本文建立了气悬浮离心制冷压缩机的数学模型,分析了不同制冷剂(R134a、R1234yf、R1234ze(E))对电机冷却过程和制冷系统性能的影响。研究结果表明:采用R1234ze(E)时电机内部温度最高,电机永磁体最高温度比采用R134a和R1234yf时高60~90℃;采用3种制冷剂时电机的绕组平均温度均随冷却入口温度的升高而降低;采用R134a和R1234yf时永磁体最高温度均随冷却入口温度的升高而降低,采用R1234ze(E)的永磁体最高温度随冷却入口温度的升高先增后降,在冷却入口温度约为25℃时最高。冷却入口温度每上升4.5℃,电机冷却回路的出口干度下降约3%~5%。带电机冷却支路的系统与传统系统相比,电机温度可以控制在更安全的运行范围之内,但采用R134a、R1234yf、R1234ze(E)的系统COP分别降低1.23%~1.82%、1.23%~1.65%、1.14%~1.17%。  相似文献   

7.
低全球变暖潜能值(Global Warming Potential,GWP)制冷剂R1234ze(E)作为R410A较为理想的替代品而被关注。但是纯R1234ze(E)的热力学性能和传输特性并不出色。近期研究表明R1234ze(E)中混入R32成分可以有效提高其热力学性能。本文在空气源热泵测试实验系统中以R1234ze(E)/R32(质量配比为27%/73%,命名为L-41b,GWP为493)混合工质为研究对象,考察了R1234ze(E)和混合工质L-41b在实际热泵系统中的运行性能。与常规制冷工质R410A的运行性能在相同工况下进行了对比,在相对高温区中L-41b对R410A具有良好的替代性能。研究结果为R1234ze(E)及其与R32混合工质的产品设计开发提供了参考数据。  相似文献   

8.
新型制冷剂R1234ze(E)(trans-1,3,3,3-tetrafluoropropene)因较低的GWP而被广泛关注,有望在热泵中作为R134a的替代品。本文对R1234ze(E)在内径为8 mm水平管内流动沸腾过程中摩擦压降特性进行实验研究,并在相同实验工况下与R134a进行对比。实验研究的流动沸腾换热的饱和温度为10℃,热流密度为5.0 k W/m~2和10.0 k W/m~2,质流密度范围为300~500 kg/(m~2·s),并分析质流密度、热流密度对R1234ze(E)和R134a饱和流动沸腾过程中摩擦压降的影响。结果表明,在相同工况下R1234ze(E)的流动沸腾过程的摩擦压降略大于R134a,如质流密度为500 kg/(m~2·s)时,R1234ze(E)的平均摩擦压降值比R134a大8.4%左右。最后,将实验结果同四种摩擦压降经验关联式进行比较分析。  相似文献   

9.
通过搭建实验台,对R1234yf的制冷及制热性能进行测试,并与R134a进行比较。测试结果表明,相同工况下,采用同一压缩机,R1234yf的排气温度更低,能在更大的工况范围内运行;R1234yf功耗比R134a高0.76%~5.18%;R1234yf的制冷量和制冷COPc与R134a相比因工况的不同而大小不同;R1234yf的制热量和制热COPh与R134a相比分别小0.75%~27.08%和1.50%~29.96%。  相似文献   

10.
为了更好地了解R1234yf制冷剂在纯电动汽车空调上的性能表现,笔者所在公司对JACSZ1项目(纯电动汽车项目)从空调零部件和系统到整车进行R1234yf和R134a对比试验研究,提出在R1234yf系统上采取增加回热器、回冷器部件和提高压缩机转速等措施。  相似文献   

11.
从热工性能、环保特性、安全性以及试验研究等角度,讨论制冷剂R1234yf替代R22的优势。试验结果表明,R1234yf在高温工况(额定制冷T3)下的能效比较R22高2%,其排气温度比R22平均降低9.8℃,R1234yf的可燃性在可燃制冷剂中是较弱的。因此,R1234yf在高温工况区替代R22具有较大的潜力。  相似文献   

12.
提出一种在汽车空调应用中替代R134a的新型制冷剂HFO-1234yf/R134a/DME。利用数据库REFPROP 9.0,通过自行编制的软件对该制冷剂的热力学性能和循环性能进行理论分析,并在电量热器制冷剂循环性能测试装置上,对R134a和HFO-234yf/R134a/DME进行试验研究。理论与试验研究发现,新型制冷剂的制冷量比R134a略小,循环性能系数(COP)也略低,而排气温度比R134a低12℃左右。该新型制冷剂具有替代R134a的潜在可行性。  相似文献   

13.
姜昆  刘颖  姜莎 《制冷学报》2012,33(5):37-42
基于Peng-Robinson通用状态方程,采用基团贡献原理以及多项式拟合方法,建立了符合精度要求的新型LGWP制冷剂HFO-1234yf的热物性模型,并对模型进行了验证,利用数学软件对模型进行编程求解,得到了较为全面的HFO-1234yf制冷剂的热物性数据。将HFO-1234yf制冷剂与R134a及R417A制冷剂的热物性能进行了对比,结果显示HFO-1234yf的饱和蒸汽压力与定压比热容和R134a的表现相似,二者的饱和蒸气压均低于R417A,HFO-1234yf制冷剂与R134a和R417A相比,其饱和状态焓值较低,这将导致HFO-1234y系统运行时的性能系数不高。该模型能为HFO-1234yf制冷剂在汽车空调以及固定式空调制冷设备上的应用提供理论依据。  相似文献   

14.
基于Peng-Robinson通用状态方程,采用基团贡献原理以及多项式拟合方法,建立了符合精度要求的新型LGWP制冷剂HFO-1234yf的热物性模型,并对模型进行了验证,利用数学软件对模型进行编程求解,得到了较为全面的HFO-1234yf制冷剂的热物性数据.将HFO-1234yf制冷剂与R134a及R417A制冷剂的热物性能进行了对比,结果显示HFO-1234yf的饱和蒸汽压力与定压比热容和R134a的表现相似,二者的饱和蒸气压均低于R417A,HFO-1234yf制冷剂与R134a和R417A相比,其饱和状态焓值较低,这将导致HFO-1234y系统运行时的性能系数不高.该模型能为HFO-1234yf制冷剂在汽车空调以及固定式空调制冷设备上的应用提供理论依据.  相似文献   

15.
为寻求R134a合适的替代品,本文通过在螺杆冷水机组上进行实验的方法,对具有低GWP的新型HFOs工质R1234ze、R513A各方面性能进行了对比实验研究,实验结果表明:R513A单位容积制冷量与R134a相近,COP略有下降,而R1234ze制冷量衰减较大,COP略有提升,两种HFOs工质的压降、排气温度与R134a近似,充注量减少3%~6%。此外本文还对三种工质的传热系数K值进行了研究。  相似文献   

16.
使用MH-59方程编制R1234yf的热力性质计算程序。在汽车空调制冷工况下,对比R1234yf和R134a的压力比、排气温度、单位质量压缩功、单位质量制冷量、单位质量冷凝负荷、COP、热力完善度、单位体积制冷量及压缩机吸气比容,得出它们随蒸发温度的变化情况。理论循环性能分析表明:R1234yf作为汽车空调制冷剂,在不改变制冷系统设备的前提下可以直接替代R134a,并且可以降低压缩机排气温度。  相似文献   

17.
介绍R1234yf,R1234ze(E),R452B,R513A和R515A这5种典型HFO类工质的基础特性,分别针对水冷式和风冷式冷水机组的典型设计工况,开展上述5种工质与R134a,R410A和R22这3种传统工质的循环性能初步对比分析,结果表明:R1234ze(E)和R515A具有较高的COP和较低的排气温度,但单位容积制冷量偏低;R452B虽然具有较高的单位容积制冷量,但还须在系统方面进行深入优化以提升机组的整体能效。  相似文献   

18.
本文从理论方面研究了混合制冷剂的相平衡特性,基于Peng-Robinson(PR)状态方程与Wong-Sandler(WS)混合法则,结合Predictive Soave Redlich Kwong(PSRK)方程中使用的UNIFAC基团贡献法,构建了混合物气液相平衡预测模型(PRWS-UNIFAC-PSRK)。结果表明:二元混合物R32/R1234yf的压力及气相质量分数的模拟结果与实验值偏差分别在±2.5%和±0.02内;三元混合物R134a/R1234yf/R600a的压力及气相组分质量分数计算值与实验数据的偏差基本在±3%和±0.04内;建立了R1234yf/R290/R134a系的三元相平衡图,当质量分数在0.25/0.70/0.05左右时存在共沸点。通过采用多参数状态方程,改进活度系数模型,获取更为准确的二元相互作用系数,可进一步提高模型的预测精度。  相似文献   

19.
在热泵热水器名义工况下,本文建立了热泵系统循环热力学模型,利用EES程序对混合工质R1234ze/HCs及对应的纯工质热泵系统循环性能进行了对比分析。结果表明:R1234ze/R600在质量分数(20/80)和R1234ze/R600a在质量分数(40/60)存在最优配比,对应的最大制热COP_h分别为3. 41和3. 32,而R1234ze/R290则呈现单调下降趋势。R1234ze/R600(20/80)系统的制热COP_h比R1234ze/R600a(40/60)、R1234ze、R290、R600、R600a系统分别高2. 7%、17%、0. 09%、16. 3%和17. 8%,排气温度为76. 9℃,冷凝压力为0. 711 MPa,压比为6. 32,有望成为新型替代工质。  相似文献   

20.
超额吉布斯自由能-状态方程法(G~E-EoS)是继传统的状态方程法和活度系数法之后预测气液相平衡的一个新思路。本文采用PRWS-UNIFAC-PSRK模型对R161/R1234yf、R32/R125/R134a及强非共沸工质R1234yf/R170/R14系的气液相平衡数据进行计算。结果表明:R161/R1234yf系压力和气相组分质量分数的计算值与实验值的偏差在±1.5%和±0.02以内,优于REFPROP9.0软件的计算结果,而R32/R125/R134a系的偏差分别在±4%和±0.02以内。根据计算结果及三维相平衡图发现,R1234yf/R170/R14在质量分数比为0.4/0.2/0.4附近时体系的温度滑移现象最为明显,最大的滑移温度达到72.5 K;且R1234yf组分的质量分数越大,泡点温度与露点温度越高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号