首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《真空》2016,(3)
采用化学气相沉积和电子束物理气相沉积工艺在镍基单晶高温合金基体上制备了(Ni,Pt)Al/YSZ(Yttira stabilized zirconia,YSZ)热障涂层(Thermal barrier coatings,TBCs),研究了TBCs涂层在1100℃的循环氧化性能。结果表明,陶瓷涂层的剥落位置主要出现在热生长氧化物(Thermally grown oxide,TGO)层内部、TGO层/粘结层的界面或者粘结层表面下方几个微米处。试验过程中,粘结层表面晶粒尺度不规则分布、晶粒晶界"背脊"形貌残留、TGO层下方孔洞形成、陶瓷层内纵向裂纹贯穿延伸和TGO层内残余应力释放速率过快均是可能导致TBCs涂层过早剥落失效的主要原因。  相似文献   

2.
采用真空电弧镀设备制备热障涂层(TBCs)中的NiCrAlYSi金属粘结层,采用电子束物理气相沉积工艺(EB-PVD)制备YSZ陶瓷层,利用带能谱仪的扫描电子显微镜对沉积态和热循环损伤后的热障涂层试样的形貌、组织结构以及元素成分进行分析,研究热障涂层从热循环初期到失效的过程中层间损伤及元素扩散行为.结果表明,随着热循环...  相似文献   

3.
以NiCoCrAlY作为粘结层、8wt%Y2O3稳定的ZrO2(8YSZ)为陶瓷层,利用等离子喷涂(PS)技术制备2种在陶瓷层及陶瓷层/粘结层界面处具有不同孔隙率的热障涂层(TBCs),研究TBCs的热循环寿命差异,分析不同孔隙率TBCs的失效机制。结合有限元模拟计算了TBCs应力分布,分析了高孔隙率TBCs中重复平行裂纹形成的原因及2种TBCs剥落的失效模式。利用光学显微镜(OM)、SEM和EDX分析TBCs的断面微观结构及元素分布。结果显示:高孔隙率TBCs比致密TBCs的寿命增加了1倍。高孔隙率TBCs在陶瓷层及界面处存在更多的孔隙和微裂纹,释放了TBCs中积累的应变能,同时氧化铝层中出现的重复平行裂纹能进一步减小了陶瓷层与粘结层之间的应力,进而延长了高孔隙率TBCs的寿命。为制备长寿命TBCs奠定结构设计基础。   相似文献   

4.
热障涂层(TBC)的使用对燃气轮机的寿命和效率都有明显提升,而TBC一般是由金属粘结层和ZrO_2-7%(质量分数) Y_2O_3(7YSZ)陶瓷层组成。与飞行器推进系统的TBC相比,燃气轮机的服役环境有其特殊性。在工业燃气轮机服役过程中,TBC系统中金属粘结层的氧化是导致涂层过早失效最重要的原因之一。TGO(热生长氧化层)的形成不可避免,但抑制TGO的生长速率可以提高TBC的使用寿命,而7YSZ是一种对氧离子扩散几乎无阻碍作用的材料。因此,在7YSZ涂层上覆盖一层氧离子扩散障碍膜是阻止TGO生成的一种可行方法。本研究中,在7YSZ涂层表面沉积一层铝膜。经热处理后,在7YSZ涂层表面通过Al和ZrO_2原位反应生成α-Al_2O_3层,该层可以作为氧离子扩散障碍层。此外,对热处理压力和铝改性的7YSZ涂层抗氧化性关系进行了研究。  相似文献   

5.
为了研究航空发动机中涡轮叶片表面的热障涂层对辐射光谱的反射特性,本文使用真空电弧镀法在不锈钢基体上分别制备了NiCrAlYSi和NiCoCrAlYHf两种热障涂层的粘结层,并随后使用电子束物理气相沉积(EB-PVD)法制备了ZrO_2·Y_2O_3(YSZ)热障涂层的陶瓷面层,最后利用紫外-可见-近红外分光光度计测定了常温下热障涂层在0.3μm~2.5μm波段的反射率光谱并进行了分析研究。结果表明:金属粘结层和陶瓷面层厚度均相同时,不同的粘结层材料对热障涂层的光谱反射率影响不大,整个波段内NiCrAlYSi/YSZ和NiCoCrAlYHf/YSZ涂层的光谱反射率接近。当粘结层NiCrAlYSi的厚度相同,面层YSZ的厚度分别为20μm、100μm、170μm三种不同厚度时,热障涂层的光谱反射率表现出不同的特性,在0.3μm~0.45μm波段,厚度为20μm的YSZ的试样因表面呈蓝紫色反射紫光能力最强,而灰白色的其他两个试样反射紫光能力接近;在0.45μm~2.5μm波段,YSZ涂层厚度与光谱反射率正相关,涂层厚度越厚光谱反射率越高。通过调整电子束物理气相沉积工艺制备了YSZ微叠层,与相同厚度的传统柱状晶的YSZ相比,YSZ微叠层的光谱反射率提高了约一倍。  相似文献   

6.
研究了电子束物理气相沉积热障涂层在1150~30℃之间的循环氧化行为;分析了TGO中YSZ-Al2O3混合区的形成过程及其对TGO的生长与TBCs失效的影响.TGO的向外生长和TBC沉积时形成的YSZ细晶区是形成YSZ-Al2O3混合区的两个重要条件.YSZ-Al2O3混合区对TBCs失效的影响表现在加速TGO的生长和裂纹易在该混合区形成两方面.  相似文献   

7.
航空发动机涡轮叶片工作时表面经常产生CaO-MgO-Al2O3-SiO2(简称CMAS)等沉积物。本文中研究了电子束物理气相沉积(EB-PVD)制备ZrO2热障涂层(TBCs)在CMAS环境下的热循环行为及失效机制。结果表明, 在1200℃热冲击条件下, 表面涂覆CMAS的热障涂层的热循环寿命低于100次, 而未涂覆CMAS的涂层寿命达到500次以上, CMAS 的存在加速了热障涂层的剥落失效。在1200℃经过210次循环后, ZrO2陶瓷层与CMAS之间形成了约8 μm厚的互反应区, 其形成主要与CMAS中Ca2+内扩散有关。CMAS环境下热障涂层陶瓷层产生大量横向裂纹, 涂层的失效主要以陶瓷层片状剥落为主。  相似文献   

8.
任维鹏  李青  肖程波 《材料工程》2014,(6):74-78,83
采用电子束物理气相沉积(EB-PVD)法在一种新型定向合金DZ466试样上沉积CoCrAlY黏结层和Y2O3部分稳定的ZrO2(YSZ)陶瓷层,对试样进行1050℃循环氧化实验并研究其氧化行为。采用X射线衍射仪、扫描电镜以及电子探针对涂层进行显微组织分析。结果表明:在1050℃氧化1500h(热循环31次)后,热障涂层未出现脱落现象。沉积态CoCrAlY黏结层主要由β-CoAl相和γ-Co固溶体相组成;1050℃氧化后,在黏结层与陶瓷层界面生成热生长氧化物(TGO)层,黏结层逐渐发生退化,β-CoAl相逐渐转化为γ-CoNi固溶体;氧化1200h后,TGO/黏结层界面出现由活性元素效应导致的氧化物栓;TGO层皱曲行为导致TGO/陶瓷层界面出现微裂纹,并且该微裂纹沿界面横向扩展。TGO的厚度增长模式符合分段抛物线规律,初期氧化速率常数约为6.1×10-14cm2/s,氧化400h后,氧化速率常数减小,为3.5×10-14cm2/s。  相似文献   

9.
热障涂层材料的研究进展   总被引:2,自引:0,他引:2  
热障涂层技术广泛用于航空涡轮发动机等尖端领域,相关的研究涉及新型热障涂层材料的开发、粘结层成分和表面结构的优化、高温氧化后热生长氧化物(TGO)或TGO/粘结层(BC)界面处残余应力水平的检测、新型涂层制备工艺的开发等诸多方面.主要阐述了时7-8YSZ热障涂层材料的改良、烧绿石结构材料的开发、超音速微粒轰击粘结层表面细...  相似文献   

10.
采用等离子喷涂-物理气相沉积(PS-PVD)在预处理的粘结层表面制备了柱状结构的7YSZ热障涂层,并在大气环境下测试了该涂层在950℃的静态高温氧化性能。利用透射电镜(TEM)、扫描电子显微镜(SEM)及能谱仪(EDS)等对热障涂层进行了表征,并采用阻抗谱分析研究了该涂层在高温氧化过程中的结构演变过程。结果表明,7YSZ热障涂层是由二次柱状晶及其纳米间隙、柱状枝晶间孔隙和分布在枝晶上的微纳米固态颗粒组合形成。阻抗分析表明,热生长氧化物(TGO)层在高温氧化150 h后氧空位含量减少,致密度增加。在高温氧化过程中,二次柱状晶的内部结构没有发生明显改变。此外,氧化过程中YSZ层内形成的烧结收缩裂纹是导致YSZ晶界电容值减小、电阻值增加的主要原因。  相似文献   

11.
锆酸钆(Gd2Zr2O7,GZO)在其熔点以下具有稳定的相结构,并且热导率较低,是替代氧化钇稳定氧化锆(yttria-stabilized zirconia, YSZ)成为热障涂层(thermal barrier coatings, TBCs)的陶瓷层部分的最有潜力的材料之一。但是,较低的断裂韧性制约着GZO的工程应用。为了实现GZO-TBCs的长寿命服役,制备了YSZ+GZO双陶瓷层TBCs,并通过分析涂层在高温下的结构演变规律来揭示双陶瓷涂层长寿命服役机理。结果表明,相比于单层GZO的TBCs, YSZ+GZO双陶瓷TBCs的热循环寿命提高了12倍。进一步研究GZO涂层在热循环过程中的失效行为,结果表明,GZO涂层在热循环后未发生相变,经1250和1450℃热暴露100 h后,其表观孔隙率分别下降了46.0%和59.8%,硬度则分别提高了79.0%和123.8%,且在热暴露初期变化较快,后期渐渐减缓。观察发现,GZO涂层在高温热暴露过程中层内纵向裂纹、层间未结合区域和球状孔隙等微观缺陷的逐渐愈合,导致涂层致密度提高、...  相似文献   

12.
研究了应变幅、预氧化及高温保载时间对涂覆热障涂层高温合金样品的热梯度机械疲劳性能的影响。结果表明,随应变幅增大,样品疲劳寿命降低。随着预氧化及高温保载时间的增加,样品的氧化损伤增大,疲劳寿命也不断降低。试验过程中,粘结层氧化形成的热生长氧化物层(TGO层)破裂而萌生裂纹,裂纹沿粘结层/TGO层界面扩展而形成分层裂纹,分层裂纹与陶瓷层内贯穿裂纹连接导致陶瓷层剥落而失效。考虑到热障涂层内最大应力及氧化损伤,建立了一个涂覆热障涂层高温合金样品的热梯度机械疲劳寿命预测模型。  相似文献   

13.
刘林涛  张勇  吕海兵  何飞 《材料导报》2021,35(z1):160-162,185
本文介绍了电子束物理气相沉积(EB-PVD)技术制备热障涂层的界面失效行为,并在此基础上综述了活性元素对粘结层/热生长氧化物层(TGO)界面性能的作用机制.  相似文献   

14.
在1250℃燃气热循环条件下,测试热障涂层抗冷热冲击性能,以模拟发动机叶片的启动升温与关闭降温循环过程。采用电化学阻抗谱测试和扫描电镜(SEM)系统研究热循环过程中热生长氧化物(TGO)生长与YSZ陶瓷层微结构演变。结果表明:随着热循环次数增加,热障涂层内TGO不断生长变厚,在中频阶段的阻抗谱响应越来越显著。YSZ陶瓷层内部经历了微裂纹的萌生与扩展两个阶段。经过100次热循环后的YSZ层表现出与喷涂态涂层相似的阻抗特征,表明高温下烧结会使YSZ层产生的微裂纹在短时间内愈合。但经过300次热循环后的YSZ层表现出与喷涂态完全不同的阻抗谱,并随热循环次数增加,YSZ颗粒间隙阻抗值不断增加,表明YSZ内层产生了不可愈合的微裂纹,是导致YSZ层最终失效的主要因素。  相似文献   

15.
LaMeAl11O19陶瓷具有独特的晶体结构, 优异的热力学性能, 低热导率, 高温相稳定性等特点, 是一类非常有应用前景的热障涂层(TBC)材料。本研究通过大气等离子喷涂(APS)制备了LaMeAl11O19/YSZ (Me=Mg, Cu, Zn)双陶瓷层热障涂层。通过对涂层进行火焰热循环测试并结合扫描电子显微镜、X射线衍射仪等分析技术对涂层进行失效分析。结果表明, LaMgAl11O19 (LMA)、LaZnAl11O19 (LZA)和LaCuAl11O19 (LCA)粉末在等离子喷涂过程中发生了分解, 导致三种涂层中磁铅石相含量的差异, 从而影响三种涂层的热循环寿命。由于LaMeAl11O19层与YSZ层的热膨胀系数不匹配以及非晶相重结晶产生的体积收缩, LaMeAl11O19层从YSZ层上剥落。YSZ层暴露在高温下, 加速了烧结和TGO的生长, 又促进了YSZ层剥落。低温下, LaMeAl11O19的热导率随着Me原子序数增加而降低; 高温下, 与LMA和LZA相比, LCA涂层红外发射率最高(0.88, 600 ℃), 削弱了光子传导对热导率的贡献, 导致热导率降低, LCA在高温红外辐射涂层中具有潜在的应用价值。  相似文献   

16.
研究基于等离子喷涂-物理气相沉积(PS-PVD)工艺的沉积表面的粗糙度对YSZ陶瓷层结构的影响,初步阐明了表面粗糙度对陶瓷层气相沉积过程的影响和涂层结构的形成规律。采用PS-PVD工艺在预制有NiCoCrAlYTa黏结层的K417G高温合金上制备YSZ陶瓷层;采用SEM、粗糙度检测仪、3D表面形貌仪等方法分析PS-PVD YSZ陶瓷涂层的形貌和结构特征。基体表面粗糙度对PS-PVD涂层结构有很大影响。结果表明:当基体表面粗糙度分别为 R a≤2μm, 2μm< R a<6μm, R a≥6μm时,涂层粗糙度分别在3.5~5,6~10,10~15μm区间;特征表面形貌"菜花头"的直径随着基体表面粗糙度的增加而逐渐增大, d P=38.5μm, d 280S =25.5μm, d 60S =38.7μm, d 24S =102μm, d S=137μm。表面粗糙度主要通过PS-PVD气相沉积过程中的阴影效应来影响涂层生长和形成差异性结构,随着基体表面粗糙度的增加,YSZ陶瓷层受阴影效应影响增大,表面形貌"菜花头"尺寸和柱状结构间间隙增大,形成更加疏松的结构。  相似文献   

17.
热障涂层失效机理研究进展   总被引:12,自引:0,他引:12  
热障涂层(TBCs)具有良好的隔热性能,是航空发动机和燃气轮机高温部件的关键材料.在高温服役状态,涂层的剥落会导致严重的问题,因此涂层的失效机理是热障涂层研究中急需解决的关键问题.除了受到热应力的影响以外,涂层的失效还受到热生长氧化物(TGO)的生成和长大的影响,本文介绍了粘结层的氧化、TGO的生成和长大以及微裂纹的产生、扩展、直到剥离脱落的整个失效过程;探讨了影响热障涂层失效的若干因素,并对其进行的各种改性研究进行了概述,分析总结了热障涂层失效相关研究的发展趋势.  相似文献   

18.
李家惠  刘梅军 《材料保护》2021,54(10):102-110,116
金属/陶瓷阻隔层不仅可用于防钛火可磨耗封严涂层起阻燃作用,还可用于航空发动机热部件的热障涂层.以航空发动机压气机防钛火涂层的应用为主要背景,对金属/陶瓷阻隔层体系结构设计、涂层材料以及制备方法进行了系统的阐述.在涂层材料层面,分别介绍了陶瓷层与金属粘结层的材料成分设计、性能特点及其合成方法.在涂层制备技术层面,主要阐述了等离子喷涂(PS)、电子束物理气相沉积(EB-PVD)以及新型的等离子物理气相沉积(PS-PVD)3种方法.最后,面向防钛火涂层的发展需求,提出了金属/陶瓷阻隔层未来在材料升级、工艺优化、性能表征以及涂层技术理论体系等方面的发展方向.  相似文献   

19.
采用PS-PVD工艺在预制有NiCoCrAlYTa黏结层的K417G高温合金上制备YSZ陶瓷层;采用万能拉伸试验机、粒子冲刷仪、静态氧化炉等设备测试PS-PVD YSZ陶瓷涂层的结合强度、抗粒子冲刷和抗高温氧化性能;采用SEM和EDS分析涂层表面、截面形貌和元素分布等。结果表明:表面粗糙度对YSZ陶瓷层拉伸结合强度、抗粒子冲刷和抗高温氧化性能的影响很大。随着粗糙度的增大,结合强度先增大而后减小。Ra=0.40μm表面上沉积的YSZ涂层,其结合强度最高,达到23.5 MPa。拉伸断裂发生在涂层内部,并距离黏结层40~70μm的位置。随着表面粗糙度的增大,冲刷速率先减小而后增大,Ra=0.40μm涂层的抗粒子冲刷性能最好,冲刷速率仅为2.8×10^-3 g/g,表面起伏小和孔隙率低是涂层具有良好抗粒子冲刷性能的重要原因。不同表面粗糙度制备的YSZ涂层均能生成致密连续的热生长氧化物(TGO)层。粗糙度大则生长的TGO起伏大,更容易导致局部增厚和应力集中而失效。  相似文献   

20.
随着航空发动机和燃气轮机(简称“两机”)服役温度的升高,目前,在两机热端部件表面防护方面应用最为广泛的热障涂层(Thermal barrier coatings, TBCs)存在陶瓷层材料氧化钇稳定氧化锆(Yttria-stabilized zirconia, YSZ)在高温下会发生相转变、热膨胀系数与金属基底不匹配以及烧结导致涂层的热导率升高等问题,严重影响TBCs的服役寿命。新一代TBCs陶瓷面层材料分为以下几类:(1)稀土氧化物稳定YSZ;(2)钙钛矿结构陶瓷材料;(3)稀土六铝酸盐或稀土钽酸盐;(4)烧绿石或萤石结构稀土锆酸盐。其中,稀土氧化物掺杂可有效降低YSZ热障涂层的热导率,提高其热膨胀系数、高温相稳定性及耐烧结性能,被认为是提高YSZ热障涂层高温稳定性的有效方法。基于此,本文重点阐述了单元或多元稀土氧化物掺杂YSZ热障涂层材料的研究进展,讨论了稀土氧化物掺杂对YSZ陶瓷面层高温相稳定性、热导率和热膨胀系数的影响机理。基于耦合作用机理为未来稀土氧化物掺杂YSZ热障涂层的研发提供一定的借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号