首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Effects of lake level fluctuations on coastal bluff erosion in the Great Lakes are pervasive and of significant concern to policy-makers and property owners. Previous studies of bluff erosion have primarily estimated two-dimensional bluff recession rates over years to decades. However, bluff erosion is an irregular process in time and space so averaging coarse resolution observations over long time periods may neglect important processes driving erosion. To address this we use photogrammetric surveys of a Lake Michigan bluff to create four high resolution (10 cm) digital elevation models (DEMs) that span one year with images collected from small unoccupied aerial systems (sUAS). The elevation models were differenced to compare variations in sediment loss to modelled time-series of wave data, atmospheric temperature and lake level. The sub-annual erosion rates calculated from sUAS surveys were compared to long-term recession rates obtained by digitizing historic aerial imagery. The rate of erosion of the bluffs is a time dependent function of two factors: (1) the supply of sediment to lower regions on the bluffs from mass wasting and (2) increased wave erosion resulting from above-average lake levels and intensified onshore wave energy. These factors combine in the early spring when wave energy is elevated and atmospheric temperatures increase, causing reduction in bluff sediment strength by thawing, as well as an increase in porewater pressure from snow melt. Most importantly, above-average lake levels sustained in the longer term (multiple years) are required for the combination of (1) and (2) to result in substantial bluff erosion.  相似文献   

2.
Concern exists that the introduction of dreissenid mussels following long-term effects of pollution may have completely eliminated native mussel species from Lake Erie. Natural seiche events were used to facilitate surveys for live unionids on five occasions in the western basin of Lake Erie and Sandusky Bay between 2007 and 2009, and beach and estuary surveys were conducted at numerous additional sites between 2004 and 2009. Sixteen unionid species were found living in or near Lake Erie, including six sites in the nearshore zone of the lake. Each community consisted of live individuals from two to eight species, and evidence included live and/or fresh dead material from several state listed species at multiple sites. Where estimated, the mean overall density was low at 0.09 unionids/m2, although similar to other known unionid refuges in the lower Great Lakes. While the ephemeral nature of seiche events makes them a limited survey tool, their application combined with increasing numbers of fresh shells washing ashore over the past few years indicates that unionids are extant in the western basin of Lake Erie, and may further suggest that conditions may be improving for native mussel species.  相似文献   

3.
Managers have long embraced the need to maintain diversity as a requisite condition for population and community sustainability. In the case of Great Lakes lake trout, diversity has been severely compromised. The identification of new gamete sources may be beneficial to lake trout reintroduction efforts, particularly in situations where native stocks have been completely extirpated such as in Lake Michigan. Lake trout from Elk Lake, Michigan, are genetically distinct from domestic hatchery strains and historical forms of lake trout from Lake Michigan. Importantly, Elk Lake fish were genetically distinct from Marquette strain lake trout which were previously stocked into Elk Lake. Elk Lake fish were most similar to Lake Michigan basin-derived Lewis Lake (LLW) and Green Lake (GLW) hatchery strains and to historical Lake Michigan populations from the Charlevoix, Michigan area. While all individuals exhibited characteristics of lean form lake trout, the body shape of lake trout from Elk Lake, stocked lean fish from Lake Michigan and Lake Superior wild lean strains from near Isle Royale differed. Elk Lake fish were more fusiform, elongate, and streamlined with a narrower caudal peduncle compared to hatchery lean strains and wild lean forms from the Isle Royale region of Lake Superior. The lake trout population in Elk Lake is a remnant of a now extirpated native Lake Michigan population that was established either by natural colonization or stocking from historical Lake Michigan populations. Elk Lake lake trout is as genetically diverse as other strains used in Great Lakes reintroduction efforts and likely represent a viable gamete source representing genetic diversity lost from Lake Michigan.  相似文献   

4.
    
Natural reproduction of salmonids occurs in many Lake Michigan tributaries, yet little is known about abundance and the potential contribution of wild fish hatching in Wisconsin tributaries. The objectives of our study were to determine if: 1) abundance of wild juvenile salmonids (primarily adfluvial rainbow trout, Oncorhynchus mykiss, referred to as steelhead) varied among selected Wisconsin streams based on available spawning and age-0 habitat; 2) stream temperature regimes could limit survival of juvenile salmonids, and 3) wild juvenile salmonids outmigrate from Wisconsin tributaries into Lake Michigan or larger tributaries. In 2016 and 2017, juvenile salmonid abundance was estimated in six Wisconsin tributaries to Lake Michigan by multiple-pass depletion sampling using backpack electrofishing. Habitat assessments included steelhead redd surveys, age-0 habitat surveys, and stream temperatures were monitored using in-stream loggers. Passive integrated transponder (PIT) tagging and PIT antennas were used to detect outmigration from three streams (Willow, Stony and Hibbard creeks). Population estimates for individual streams ranged from 75 to 2276 for juvenile steelhead and from 0 to 243 for juvenile coho salmon, Oncorhynchus kisutch. No correlation was detected between juvenile steelhead abundance and quality age-0 habitat. Stream temperatures rarely exceeded the thermal limit for steelhead (27 °C). Outmigration rates for three streams ranged from 0.6% to 3.1%, but these estimates were considered minimum values. Low abundance of wild juvenile steelhead and coho salmon alone suggest that the contributions of these tributaries to Lake Michigan fisheries are likely small. Furthermore, relying on returns of wild steelhead produced in these streams is probably insufficient to maintain stream fisheries.  相似文献   

5.
The Lake Michigan brown trout (Salmo trutta) fishery is sustained by the stocking of five hatchery strains by four state natural resource agencies. In the absence of exhaustive marking programs, strain-specific measures of stocking success are lacking for brown trout in Lake Michigan. We used microsatellite-based genetic assignment testing and genetic stock identification (GSI) to determine the strain of 122 angler-caught brown trout from four northeastern Lake Michigan ports. We compared strain composition estimates for sportfishing harvest to expected proportions of each brown trout strain in Lake Michigan at the time of harvest using stocking records corrected for age-specific mortality rates. Reassignment rates of individuals from baseline strains averaged 92.1% (range: 84.1–98.0%). Assignment testing and GSI analyses consistently found Wild Rose strain brown trout represented approximately 89% of the northeastern Lake Michigan sportfishing harvest, while only comprising 43.8% of the expected stock. Of the Michigan angler harvest of Wild Rose strain brown trout, approximately half were estimated to have originated from Wisconsin hatcheries, demonstrating a propensity for lake-wide movements. Continued assessments will improve understanding of strain relative contributions to angler harvests that can direct future stocking efforts.  相似文献   

6.
    
Hydrodynamic processes, such as fluctuating water levels, waves, and currents, shape coastlines across timescales ranging from minutes to millennia. In large lacustrine systems, such as the Laurentian Great Lakes, the role of water level in driving long-term (centuries to millennia) coastal evolution is well understood. However, additional research is needed to explore short-term (weeks to months) beach geomorphic response to fluctuating water level. Developing a process-focused understanding of how water level fluctuations shape coastal response across these shorter time scales is imperative for coastal management. Here, we present measurements of geomorphic response along a lacustrine beach ridge plain to seasonal water level fluctuations during a decadal high-stand in Lake Michigan water level. Frequent topographic change measurements revealed high spatial and temporal variability in geomorphic response to rising lake level. Sites immediately downdrift of shore protection began to erode immediately as lake level increased. The co-occurrence of peak seasonal lake levels and a modest increase in wave energy resulted in erosion and overwash at sites that resisted erosion during the initial seasonal rise in lake level. None of the sites in this study returned to their initial morphology following seasonal lake level rise. Given that peak water levels were nearly identical in 2017 and 2018, yet the majority of erosion at our sites occurred in 2017, we postulate that erosion associated with seasonal lake level rise is primarily a function of the change in annual maximum water level from year to year, rather than solely the elevation of the water level.  相似文献   

7.
    
Coregonine fishes are important to Laurentian Great Lakes food webs and fisheries and are central to basin-wide conservation initiatives. In Lake Ontario, binational management objectives include conserving and restoring spawning stocks of cisco (Coregonus artedi) and lake whitefish (C. clupeaformis), but the spatial extent of contemporary coregonine spawning habitat and the environmental factors regulating early life success are not well characterized. In Spring 2018, we conducted a binational ichthyoplankton assessment to describe the spatial extent of coregonine spawning habitat across Lake Ontario. We then quantified the relative importance of a suite of biophysical variables hypothesized to influence coregonine early life success using generalized additive mixed models and multimodel inference. Between April 10 and May 14, we conducted 1,092 ichthyoplankton tows and captured 2,350+ coregonine larvae across 17 sampling areas, predominantly within embayments. Although 95% of catches were in the eastern basin, coregonine larvae were also found in historical south shore spawning areas. Most coregonine larvae were cisco; <6% were lake whitefish. Observed catches of both species across sampling areas were strongly and similarly associated with ice cover duration, but the importance of site-specific characteristics varied, such as distance to shore and site depth for cisco and lake whitefish, respectively. These results suggest that regional-scale climatic drivers and local environmental habitat characteristics interact to regulate early life stage success. Furthermore, strong regional and cross-species variation in larval distributions emphasize the importance of lake-wide assessments for monitoring both the current eastern basin populations and potential expansions into western Lake Ontario habitats.  相似文献   

8.
    
Eutrophication has been linked to increased greenhouse gas emissions from inland waters. Phytoplankton blooms in Lake Erie have increased since the 1990s, although its greenhouse gas emissions are not well characterized. We measured CH4 and N2O concentrations and diffusive fluxes in four seasons around the entire lake, and CO2 fluxes in one summer season. Lake Erie is a source of CH4 all year across the lake, concentrated in spring and summer in the Western Basin. Methane emissions ranged from 0.03 to 14.87 mg C m−2 d-1. Methane is predominantly biogenic, and natural gas leaks are an insignificant source. While Lake Erie is an overall N2O source, it is an N2O sink in winter and occasionally during summer. Emissions of N2O ranged from −0.08 to 1.22 mg N m−2 d-1. We also measured CO2 fluxes in summer only, when Lake Erie is a small atmospheric CO2 sink. While areal fluxes of CH4 and N2O are similar to those observed elsewhere, total fluxes from Lake Erie are higher due to its surface area. Lake Erie emits ~ 6300 (±19%) metric tons of CH4-C yr−1 and ~600 (±37%) metric tons N2O-N yr−1: almost 500,000 metric tons CO2-eq yr−1 total. This is the first comprehensive dataset of CH4 and N2O concentrations and diffusive emissions in a very large lake. More measurements and monitoring are needed to determine whether increased eutrophication in the Great Lakes is tied to increased emissions of these powerful climate forcers in a possible positive feedback to climate warming.  相似文献   

9.
Manayunkia speciosa has been a taxonomic curiosity for 150 years with little interest until 1977 when it was identified as an intermediate host of a fish parasite (Ceratomyxa shasta) responsible for fish mortalities (e.g., chinook salmon). Manayunkia was first reported in the Great Lakes in 1929. Since its discovery, the taxon has been reported in 50% (20 of 40 studies) of benthos studies published between 1960 and 2007. When found, Manayunkia comprised < 1% of benthos in 70% of examined studies. In one extensive study, Manayunkia occurred in only 26% of 378 sampled events (1991–2009). The taxon was found at higher densities in one area of Lake Erie (mean = 3658/m2) and Georgian Bay (1790/m2) than in five other areas (mean = 60 to 553/m2) of the lakes. A 70-year history of Manayunkia in western Lake Erie indicates it was not found in 1930, was most abundant in 1961 (mean = 8039, maximum = 67,748/m2), and decreased in successive periods of 1982 (3529, 49,639/m2), 1993 (1876, 25,332/m2), and 2003 (79, 2583/m2). It occurred at 48% of stations in 1961, 58% in 1982, 52% in 1993, and 6% of stations in 2003. In all years, Manayunkia was distributed primarily near the mouth of the Detroit River. Causes for declines in distribution and abundance are unknown, but may be related to pollution-abatement programs that began in the 1970s, and invasion of dreissenid mussels in the late-1980s which contributed to de-eutrophication of western Lake Erie. At present, importance of the long-term decline of Manayunkia in Lake Erie is unknown.  相似文献   

10.
The Great Lakes are influenced by established aquatic invasive species (AIS) and the threat of new invaders persists. Grass carp, one of four species commonly referred to as Asian carp, are considered invasive because of their ability to adversely modify aquatic habitat through consumption of aquatic macrophytes. Grass carp have been infrequently detected in the Great Lakes since the mid-1980s. More frequent reports of grass carp captures from commercial fishermen in the early 2010’s elevated the concern of the potential risk of colonization in Lake Erie. This paper provides a case study detailing the development and implementation of a multi-jurisdictional response strategy for grass carp in Lake Erie. To respond to threats of grass carp in Lake Erie, Michigan and Ohio Departments of Natural Resources led targeted responses using a collaborative multi-jurisdictional approach, while simultaneously investing in reducing critical life-history uncertainties to refine strategies in an adaptive and science-based manner. Efforts to address uncertainties about grass carp life history documented spawning in two Lake Erie tributaries. Building on these early responses, the binational Lake Erie Committee developed a five-year adaptive response framework to guide response actions. The collaborative response efforts resulted in the capture and removal of 184 fertile grass carp since 2014, and efforts are ongoing to increase effectiveness of strategies to achieve desired population reduction. Coordinated grass carp response actions under the five-year strategy will continue using adaptive management principles with outcomes providing useful insights for adapting existing response frameworks and more broadly for AIS responses implemented elsewhere.  相似文献   

11.
In large lakes, temporal variability is compounded by strong spatial variability associated with mesoscale physical processes such as upwelling and basin-scale circulation. Here we explore the ability of a three dimensional model (ELCOM-CAEDYM) to capture temporal and spatial variability of phytoplankton and nutrients in Lake Erie. We emphasized the east basin of the lake, where an invasion by dreissenid mussels has given special importance to the question of spatial (particularly nearshore-offshore) variability and many comparative observations were available. We found that the model, which did not include any simulation of the mussels or of smaller diffuse nutrient sources, could capture the major features of the temperature, nutrient and phytoplankton variations. Within basin variability was large compared to among-basin variability, especially but not exclusively in the western regions. Consistent with observations in years prior to, but not after, the mussel invasion the model predicted generally higher phytoplankton concentrations in the nearshore than the offshore zones. The results suggest that the elevated phytoplankton abundance commonly observed in the nearshore of large lakes in the absence of dreissenid mussels does not have to depend on localized nutrient inputs but can be explained by the favourable light, temperature and nutrient environment in the shallower and energetic nearshore zone. The model is currently being extended to allow simulation of the effects of dreissenid mussels.  相似文献   

12.
13.
With the large Diporeia declines in lakes Michigan, Huron, and Ontario, there is concern that a similar decline of Mysis diluviana related to oligotrophication and increased fish predation may occur. Mysis density and biomass were assessed from 2006 to 2016 using samples collected by the Great Lakes National Program Office's biomonitoring program in April and August in all five Great Lakes. Summer densities and biomasses were generally greater than spring values and both increased with bottom depth. There were no significant time trends during these 10–11 years in lakes Ontario, Michigan, or Huron, but there was a significant increase in Lake Superior. Density and biomass were highest in lakes Ontario and Superior, somewhat lower in Lake Michigan, and substantially lower in Lake Huron. A few Mysis were collected in eastern Lake Erie, indicating a small population in the deep basin of that lake. On average, mysids contributed 12–18% (spring-summer, Michigan), 18–14% (spring-summer, Superior), 30–13% (spring-summer, Ontario), and 3% (Huron) of the total open-water crustacean biomass. Size distributions consisted of two peaks, indicating a 2-year life cycle in all four of the deep lakes. Mysis were larger in Lake Ontario than in lakes Michigan, Superior, and Huron. Comparisons with available historic data indicated that mysid densities were higher in the 1960s–1990s (5 times higher in Huron, 2 times higher in Ontario, and around 40% higher in Michigan and Superior) than in 2006–2016.  相似文献   

14.
To simulate ice and water circulation in Lake Erie over a yearly cycle, a Great Lakes Ice-circulation Model (GLIM) was developed by applying a Coupled Ice-Ocean Model (CIOM) with a 2-km resolution grid. The hourly surface wind stress and thermodynamic forcings for input into the GLIM are derived from meteorological measurements interpolated onto the 2-km model grids. The seasonal cycles for ice concentration, thickness, velocity, and other variables are well reproduced in the 2003/04 ice season. Satellite measurements of ice cover were used to validate GLIM with a mean bias deviation (MBD) of 7.4%. The seasonal cycle for lake surface temperature is well reproduced in comparison to the satellite measurements with a MBD of 1.5%. Additional sensitivity experiments further confirm the important impacts of ice cover on lake water temperature and water level variations. Furthermore, a period including an extreme cooling (due to a cold air outbreak) and an extreme warming event in February 2004 was examined to test GLIM's response to rapidly-changing synoptic forcing.  相似文献   

15.
We compared Bythotrephes population demographics and dynamics to predator (planktivorous fish) and prey (small-bodied crustacean zooplankton) densities at a site sampled through the growing season in Lakes Michigan, Huron, and Erie. Although seasonal average densities of Bythotrephes were similar across lakes (222/m2 Erie, 247/m2 Huron, 162/m2 Michigan), temporal trends in abundance differed among lakes. In central Lake Erie where Bythotrephes' prey assemblage was dominated by small individuals (60%), where planktivorous fish densities were high (14,317/ha), and where a shallow water column limited availability of a deepwater refuge, the Bythotrephes population was characterized by a small mean body size, large broods with small neonates, allocation of length increases mainly to the spine rather than to the body, and a late summer population decline. By contrast, in Lake Michigan where Bythotrephes' prey assemblage was dominated by large individuals (72%) and planktivorous fish densities were lower (5052/ha), the Bythotrephes population was characterized by a large mean body size (i.e., 37–55% higher than in Erie), small broods with large neonates, nearly all growth in body length occurring between instars 1 and 2, and population persistence into fall. Life-history characteristics in Lake Huron tended to be intermediate to those found in Lakes Michigan and Erie, reflecting lower overall prey and predator densities (1224/ha) relative to the other lakes. Because plasticity in life history can affect interactions with other species, our findings point to the need to understand life-history variation among Great Lakes populations to improve our ability to model the dynamics of these ecosystems.  相似文献   

16.
    
The Great Lakes Water Quality Agreement (GLWQA) established new Lake Erie phosphorus loading targets, including a 40% total phosphorus load reduction to its western and central basins. The Detroit and Maumee rivers’ loads are roughly equal and contribute about 90% of the load to the western basin and 54% to the whole lake. They are key drivers of central basin hypoxia and western basin algal production. So, accurate estimates of the Detroit River load are important. Direct measurement of that load near its mouth is difficult due to requiring real-time knowledge of flows around islands and the influence of Lake Erie’s seiches. Consequently, most estimates sum the loads to the St. Clair/Detroit River system. But this approach is complicated by uncertainties in the Lake Huron load and load retention in Lake St. Clair. Routine GLWQA reassessments will confirm or adjust over time the goals, loading targets, and approaches based on evolving information. So, there is a need to improve monitoring approaches that ensure accurate Detroit River loads. New approaches should take into account both the characteristics of this dynamic connecting channel and the uses of monitoring results: 1) determining the Detroit River loads to drive models, develop mass balances, set load reduction targets, and track progress; and 2) assessing the sources and processing of the loads to help guide reduction strategies. Herein, we review temporal and spatial variability in the St. Clair/Detroit River system, and suggest adjustments to monitoring that address those variabilities and both uses.  相似文献   

17.
Increased human population growth, reduction of phosphorus (P) loading, and the invasion of dreissenid mussels may have changed the spatial pattern and relationships between the nearshore and the offshore seston and nutrient concentrations in the eastern basin of Lake Erie over the past 30 years. We compared seston characteristics, nutrient concentrations, and phytoplankton nutrient status between nearshore and offshore zones in years before (1973–1985) and after (1990–2003) the dreissenid invasion. In 1973 (the only pre-dreissenid year nearshore data was collected), chlorophyll a (chla) and nutrient concentrations were higher nearshore than offshore. In post-dreissenid years, nearshore chla concentrations became significantly lower than the offshore, while carbon (C):chla ratios became higher, which was related to mussel grazing and possibly photoacclimation. Phosphorus deficiency in the phytoplankton increased over the 30-year period, and in the post-dreissenid years was less acute in the nearshore than offshore. Mean water column irradiance became higher in the nearshore relative to the offshore in the post-dreissenid years. The nutrient changes and phytoplankton physiology were consistent with the expected effects of nutrient cycling by mussels and diminished demand by phytoplankton despite increased demand from benthic algae in the nearshore. This basin-scale study suggests that dreissenid mussel invasion can be associated with alterations in the spatial pattern of water column properties in large lakes even on open coasts with vigorous circulation and exchange.  相似文献   

18.
We identified an objective set of 25 commonly available ecosystem metrics applicable across the world's large continental freshwater and brackish aquatic ecosystem. These metrics measure trophic structure, exploited species, habitat alteration, and catchment changes. We used long-term trends in these metrics as indicators of perturbations that represent an ecosystem not in homeostasis. We defined a healthy ecosystem as being in a homeostatic state; therefore, ecosystems with many changing trends were defined as more disturbed than ecosystems with fewer changing trends. Healthy ecosystems (lakes Baikal, Superior, and Tanganyika) were large, deep lakes in relatively unpopulated areas with no signs of eutrophication and no changes to their trophic structure. Disturbed ecosystems (lakes Michigan, Ontario, and Victoria) had shallow to moderately deep basins with high watershed population pressure and intense agricultural and residential land use. Transitioning systems had widely varying trends and faced increasing anthropogenic pressures. Standardized methodologies for capturing data could improve our understanding of the current state of these ecosystems and allow for comparisons of the response of large aquatic ecosystems to local and global stressors thereby providing more reliable insights into future changes in ecosystem health.  相似文献   

19.
    
As the human population of the Lake Ontario basin continues to grow, targeted research and monitoring activities to inform adaptive management are increasingly important for protecting the Lake Ontario ecosystem. As the most downstream of the Great Lakes, the Lake Ontario ecosystem is under pressure from a wide range of stressors including chemical contaminants and invasive species. This special issue highlights the broad network of binational research and monitoring efforts by federal, state, and provincial agencies and academic partners that took place during the 2018 Cooperative Science and Monitoring Initiative (CSMI) field year for Lake Ontario. The research and monitoring by creative and collaborative teams assembled under the umbrella of CSMI 2018 includes projects that investigated a wide variety of factors impacting the lake ecosystem, ranging from physics to chemistry and biology. This issue also provides examples of data sharing/synthesis and modeling tools that promote the use of these extensive datasets to explore ecosystem management options. The research and monitoring outcomes from CSMI 2018 provide managers with current information on the Lake Ontario ecosystem to inform decision making and guide restoration and protection efforts.  相似文献   

20.
    
The contribution of septic systems to watershed nutrient loads is poorly quantified although they are often cited as potentially important nutrient sources. The study used a geospatial model to estimate P loads from septic systems to the tributaries of the Canadian Lake Erie Basin to inform Lake Erie nutrient management initiatives. There is currently no inventory of septic systems in the Lake Erie Basin (e.g., numbers and locations of septic systems). Therefore a geospatial model was developed to automatically locate individual septic systems and to use these locations to estimate P load contributions to tributaries. The model was first tested on three subwatersheds in the Canadian Lake Erie Basin before being applied across the Basin. Present-day basin-wide P load estimates reveal that: (i) only a fraction of septic effluent is currently reaching the tributaries due to slow transport and other delays, as well as (ii) P attenuation in the subsurface, range from 23 ± 11 to 68 ± 32 MT/yr. Based on these estimates, septic systems may currently contribute 1.7 ± 0.8–5 ± 2.3% of the P loads to Lake Erie from Canada. However, maximum P load estimates and transient model results show that the contribution of septic systems to P loads will increase over time as slow moving septic-derived groundwater P plumes reach tributaries if aging septic systems are not maintained. This study provides widely applicable new knowledge and methodology; as well as specific findings needed to inform nutrient and septic system management in the Lake Erie Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号