首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于热误差模型进行机床热误差补偿是保证数控机床加工精度的一种有效方法,温度测点的布置和辨识会直接影响热误差建模的精确性和鲁棒性。本文提出一种互信息和改进模糊聚类法相结合的机床热关键点优化方法。以机床不同位置处的多个测点温度值及工件热变形作为分析数据,通过计算温度变量与热变形之间的平均互信息量,获得其综合关联度矩阵,确定二者之间的相关性后初选温度变量。根据改进模糊聚类法、F统计量和复判定系数对初选的温测点进行聚类,并结合温度变量与热变形之间的综合关联度值提取机床热关键点,从而实现测点优化。将基于该方法所得到的热误差模型与采用变量分组优化法获得的热误差模型进行比较,结果显示采用该方法进行热误差建模,机床X轴和Y轴的热变形预测精度得到显著提高,有利于改善加工精度。  相似文献   

2.
李艳  李英浩  高峰  孟振华 《仪器仪表学报》2015,36(11):2466-2472
基于热误差模型进行机床热误差补偿是保证数控机床加工精度的一种有效方法,温度测点的布置和辨识会直接影响热误差建模的精确性和鲁棒性。本文提出一种互信息和改进模糊聚类法相结合的机床热关键点优化方法。以机床不同位置处的多个测点温度值及工件热变形作为分析数据,通过计算温度变量与热变形之间的平均互信息量,获得其综合关联度矩阵,确定二者之间的相关性后初选温度变量。根据改进模糊聚类法、F统计量和复判定系数对初选的温测点进行聚类,并结合温度变量与热变形之间的综合关联度值提取机床热关键点,从而实现测点优化。将基于该方法所得到的热误差模型与采用变量分组优化法获得的热误差模型进行比较,结果显示采用该方法进行热误差建模,机床X轴和Y轴的热变形预测精度得到显著提高,有利于改善加工精度。  相似文献   

3.
基于Fisher最优分割法的机床热关键点优化研究   总被引:2,自引:0,他引:2  
利用温度测点建立热误差模型时,测点的选取直接影响到模型的精度.采用一种最优化分段方法——Fisher最优分割法,以试验采集到的原始数据作为分析数据,通过计算分类的直径、比较各类中的误差函数,对机床测点变量进行分类,经过对各类中温度变量与热误差之间相关系数的计算,获得用于热误差建模的热关键点,从而完成测点优化.利用多元线性回归方法对其优化出的测点建立热误差模型,与采用变量分组优化选出的温度测点建立的热误差模型进行比较,结果说明Fisher最优分割法可行、实用性强.  相似文献   

4.
提出了一种基于偏相关分析的数控机床温度布点优化方法。数控机床热误差建模一般采用多元线性回归方法,该方法中由于自变量之间的相互作用,各自变量与因变量之间的相互关系不再与简单相关系数所反映的情况完全吻合。使用偏相关分析对温度变量进行优化选择,实现了温度测点优化布置,并建立了数控机床热误差的多元线性回归优化模型,提高了热误差模型的精确性和鲁棒性。  相似文献   

5.
重型数控机床热误差建模及预测方法的研究   总被引:5,自引:0,他引:5  
重型数控机床的热误差已经成为影响其加工精度的一个关键问题。针对一台典型的重型落地铣镗床,以机床热误差测量试验为依据,分析该类机床温度场的特点;据此提出一种旨在完成高效温度测点优化的改进系统聚类方法,该方法使用一种兼顾欧氏距离和相关系数的系统聚类准则,可以有效地降低优化后温度测点之间的共线性。基于优化后的温度测点,利用多元线性回归分析,构建了机床的热误差预测模型。现场试验数据表明,该方法可以将热误差预测的均方根误差降低到10μm以下,相较于其他方法有着更高的热误差预测精度,有望在其他重型数控机床的热误差建模和预测研究中得到更大的推广应用。  相似文献   

6.
针对机床热误差补偿技术中温度测点优化选择的问题,提出采用基于灰色关联分析和模糊聚类分析相结合的方法对机床温度测点进行优化选择。采用灰色关联分析法计算温度变量与主轴热误差之间的相关系数,并据此优选温度变量,采用模糊聚类分析法对所选择的温度变量进行聚类,确定关键温度变量,结合关键温度变量建立热误差线性回归模型。在精密卧式加工中心MCH63上对该方法进行了试验验证,结果表明,温度测点的数量由29个减少到6个,机床轴向热误差由41.3μm减小到7.6μm。  相似文献   

7.
提出一种基于Kohonen神经网络的温度测点辨识优化算法,用机床进给系统上不同位置处的温度测点变化值及定位误差作为输入样本来训练神经网络。利用该网络的自组织竞争将胜出的结果输出到相应的分类模式中,根据各类分类模式中温度变量与热误差之间的相关系数,确定出机床热关键点。通过多元线性回归理论建立了热误差模型,与基于变量分组优化方法的热误差模型比较发现,该方法具有更好的可行性和有效性。  相似文献   

8.
温度测点的选择直接影响数控机床热误差补偿模型的性能。考虑到温度有序传递的特点,提出了有序聚类测点优化的方法。以试验数据为基础,计算类直径并比较目标误差函数;然后对温度变量分类,确定最佳分类数;通过计算热误差和温度之间的相关系数,确定最优测点。采用定位误差分解建模法结合选取的最优测点建立热误差预测模型,分别与模糊聚类和变量分组测点优化建立的模型进行比较,试验结果表明,有序聚类测点优化法精度较高,具有一定的应用前景。  相似文献   

9.
在数控机床的热误差补偿技术中,机床温度信息的提取对改善机床的加工精度至关重要。首先对广泛使用的模糊聚类多元线性回归模型在变工况下的性能进行了试验,结果证明:试验工况变化后,该模型预测值失准。通过方差膨胀因子判断,这种现象是由模型自变量的复共线性引起。为了改进上述模型,提出了一种温度特征提取的建模方法,通过特征提取算法,提取模糊聚类优化测点的综合特征,从而得到综合特征自变量,最后利用综合自变量进行回归建模。试验表明,该方法有效消除了复共线性对模型预测精度和鲁棒性的影响,优化后的回归模型均方根误差在4μm以内,可有效预测76%以上误差,相较于其他方法表现出优良的预测性能,易于在其他机床热误差补偿中推广使用。  相似文献   

10.
基于遗传算法优化小波神经网络数控机床热误差建模   总被引:2,自引:0,他引:2  
数控机床的热误差已经成为影响其加工精度的一个关键因素,为最大限度提高数控机床热误差补偿的精度和效率,结合遗传算法自适应全局优化搜索能力和小波神经网络良好的时频局部特性的优点,提出一种基于遗传算法优化小波神经网络的机床热误差补偿模型。以某型号五轴摆动卧式加工中心为试验对象,以机床温度变量和热误差为数据输入样本,建立小波神经网络模型热误差预测模型,然后用遗传算法优化小波神经网络权值、阈值,最终建立热误差预测模型。通过与传统人工神经网络和普通小波神经网络进行对比分析及试验论证表明,该补偿模型具有精度高、抗扰动能力和鲁棒性强等优点,有望在实际加工场合的数控机床的热误差预测和补偿研究中得到更大的推广应用。  相似文献   

11.
在数控机床热误差建模中,温度测点的选择与优化是一个难点。针对传统的FCM模糊聚类方法对数控机床温度测点优化需要人为事先确定聚类数目,提出了一种FCM自适应模糊聚类测点优化方法。该方法在FCM聚类算法的基础上,建立了聚类数自适应函数,并自动给出最佳聚类数。通过对一台立式铣床进行实验验证,结果表明:FCM自适应模糊聚类方法自动将机床的温度测点由13个减少到6个。结合多元回归分析,建立了关键测温点的热误差模型,所建立的热误差模型精度较高,热误差由50μm减小到10μm以下,验证了该方法的有效性。  相似文献   

12.
主轴热误差是影响机床精度的主要因素,建立准确的主轴热误差模型是进行机床误差补偿的关键。研究了温度测点优化和神经网络建模的方法,给出了粒子群优化灰色神经网络建模的流程。开展了主轴热误差热特性试验,得到了主轴热变形随主轴转速的变化规律。基于粒子群优化灰色神经网络建立了主轴轴向伸长和俯仰角热误差模型,并与灰色神经网络和BP网络的预测性能进行了对比,结果表明该模型可有效提高网络模型的收敛性和预测精度。  相似文献   

13.
通过建立数控机床热误差补偿的数学模型是实现机床热误差修正和提高机床精度的有效措施.本文以CL-20A数控车床主轴热变形为实验对象,在大量实验数据的基础上,利用逐步回归分析法找出机床温度敏感点,并采用基于MATLAB平台的支持向量机算法来建立车床主轴热误差数学模型.实验结果表明,所建立的模型能精确把握机床主轴热变形的规律和趋势,对于预测机床主轴热变形,实现实时热补偿具有实用价值.  相似文献   

14.
基于信息论与机床热误差有限元分析方法,提出了一种对数控机床温度测量点的位置进行优化的计算方法,这些测点包含机床热变形误差互信息量最大点。将该方法应用于一台数控螺纹磨床主轴系统的热误差温度测点位置的最优化设计选择,并通过主轴热误差测量实验验证了所提出方法的有效性。  相似文献   

15.
机床的热误差严重影响机床的加工精度,通过热误差补偿技术来减小热误差,从而提高机床的加工精度至关重要。温度测点的选择与优化是热误差补偿技术研究中的难点,本文综述了温度测点布置策略和优化方法,阐述了各方法的优缺点,并对温度测点优化技术的发展趋势进行了展望。  相似文献   

16.
数控机床热变形误差对零件加工精度有重大影响。基于GA-SVR(遗传算法-支持向量回归机)的数控机床热误差建模方法要点有三:其一是数据采样,用不同传感器测量机床关键点的温度与机床主轴变形量。其二是数据训练,把获得的数据进行支持向量回归机建模训练,同时使用遗传算法寻找支持向量回归机相关参数的最优值。其三是数据建模,建立机床热误差模型,并验证模型的准确度。仿真及实验结果表明,基于GA-SVR的数控机床热误差建模方法具有精度高和鲁棒性强的特点。并依此算法建立了以DSP和A/D为核心的热误差补差补偿器。  相似文献   

17.
已有的研究结果表明,机床的热误差约占其总加工误差的40%~70%,且机床越精密,其热误差所占比例就越大,因此,通过控制热误差以提升机床的加工精度很有必要。针对机床热误差模型的预测精度不高和泛化能力不强的问题,提出了一种引入主轴转速,并可嵌入数字孪生控制系统的机床热误差建模方法。首先,对模糊聚类分析(FCA)、灰色关联分析(GCA)及主成分回归(PCR)方法进行了理论分析;然后,以某立式加工中心为对象,通过热特性实验,获得了转速图谱下的温度数据和热误差数据,并采用模糊聚类分析结合灰色关联分析的方法选取了其温度敏感点;最后,以主轴转速和温度敏感点的温升值为输入变量,采用PCR方法建立了机床热误差模型,并将其与多元线性回归(MLR)模型进行了效果对比。研究结果表明:相比于MLR模型,所建立的PCR模型的预测精度提升9.5%,证明该模型拥有更高的预测精度和更强的泛化能力;可将模型嵌入到数字孪生控制系统中,对机床进行实时热误差预测和热误差控制。  相似文献   

18.
以卧式加工中心MCH63为研究对象,首先利用研制的温度和热误差检测系统测量了加工中心的温度场和热误差。然后基于变量分组优化的基本原理,引入修正的相关系数,确立了X、Y、Z三个方向用于建模的温度变量。最后通过RBF网络模型对该温度测点选择方法进行了验证。结果表明,该方法既能减少温度测点数量,又能保证模型的预测精度。  相似文献   

19.
为消除数控机床热误差对加工精度的影响,提出基于动态自适应加权最小二乘支持矢量机的数控机床热误差建模方法.为构建机床热误差模型,对一台XK713数控铣床进行建模试验,采用智能温度传感器与激光位移传感器分别获取机床温度值与主轴变形量.运用动态自适应算法,优化选择建模过程中的参数;对采样数据进行初始最小二乘支持矢量机建模,根据误差变量确定权重系数,得到基于加权最小二乘支持矢量机的数控铣床热误差模型.试验结果表明,基于动态自适应最小二乘支持矢量机的数控机床热误差建模方法精度高,泛化能力强,优于未加权最小二乘支持矢量机方法与传统最小二乘法.获得的模型可用于数控机床热误差补偿,以提高数控机床的加工精度.  相似文献   

20.
机床主轴热误差建模   总被引:18,自引:2,他引:16  
在测量机床关键部件温度和主轴热误差的基础上,用逐步回归方法建立了多元线性回归模型,并介绍了温度变量的选择。为机床的设计与制造提供了参考依据,也为机床的误差补偿提供了模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号