首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
以Fe2O3为活性组分,γ—Al2O3为载体,采用浸渍法制备了Fe2O3/Al2O3催化剂,并将其用于催化降解模拟聚丙烯酰胺(PAM)废水考察了催化剂制备条件对催化活性的影响,得出最佳制备工艺条件为:以Fe(NO3)3水溶液为浸渍液、活性组分负载量20%、焙烧时间3h、焙烧温度500℃在温度为60℃、pH=7.0、催化剂加入量为2g/L,H2O2的质量浓度为0.6g/L的条件下对质量浓度为400mg/L聚丙烯酰胺废水进行降解,反应90min后废水中聚丙烯酰胺相对分子质量降解率最高可达90%以上,CODcr去除率达86%,显示出了较高的催化活性.Fe2O3/Al2O3催化剂经过多次重复使用,催化活性基本没有降低,使用寿命长.  相似文献   

2.
Al2O3含量对Cu-ZnO-Al2O3-SiO2催化剂性能的影响   总被引:5,自引:0,他引:5  
研究了Al2O3含量对Cu-ZnO-Al2O3-SiO2催化剂在CO2加氢合成二甲醚中催化性能的影响,并用XRD,H2-TPR,XPS,NH3-TPD和CO2-TPD等手段进行了表征.研究结果表明,Al2O3延缓了CuO和ZnO晶粒的长大,同时使催化剂变得难以还原.加入的Al2O3富集于催化剂表面,改变了催化剂表面Cu2+和Zn2+的摩尔分数.Al2O3还与SiO2产生无定形SiO2-Al2O3混合相,提供二甲醚合成所必需的酸碱中心.反应结果表明,Al2O3在催化剂中的质量分数低于1.4%时,对转化率的提高有促进作用;当Al2O3在催化剂中的质量分数为4.0%时,甲醇合成以及甲醇脱水的活性中心呈现出较好的"协同催化效应",目标产物二甲醚的收率最高.研究认为,Al2O3通过影响CuO与Al2O3之间的相互作用以及催化剂的表面酸性,从而使催化剂对CO2加氢合成二甲醚表现出不同的催化性能.  相似文献   

3.
用微波、红外、烘箱3种干燥方法制备了负载型纳米ZrO2/Al2O3复合载体,同时在复合载体表面负载SO4^2-制成SO4^2-/ZrO2/Al2O3催化剂,将此催化剂用于α-蒎烯催化异构化反应中。用XRD、FT—IR、TPD等对催化剂的表面积、孔径、晶相结构、酸强度等进行了表征。结果表明,微波干燥法制备的复合载体催化剂(SO4^2-/ZA-W)中ZrO2的粒度较小(平均6nm),比表面积为156.1m^2/g,平均孔径为4.95nm,其表面酸性中心数和酸强度均高于红外干燥法和烘箱干燥法制备的催化剂。SO4^2-/ZA-W催化剂在α-蒎烯催化异化反应中具有较高的活性,α-蒎烯转化率为95.6%,α-松油烯、柠檬烯等单环萜烯的含量达到56.5%。  相似文献   

4.
采用浸渍法制备KF/Al2O3固体碱催化剂,催化丙烯醇与环氧乙烷(EO)反应合成乙二醇丙烯基醚。考察了催化剂焙烧温度、氟化钾(KF)负载量对催化性能的影响,并采用X-射线衍射(XRD)、扫描电镜(SEM)等对催化剂进行了表征。结果表明:KF负载量为30%,焙烧温度为550℃时,催化剂对丙烯醇和EO反应的催化活性最高。KF/Al2O3固体碱催化剂用于催化合成乙二醇丙烯基醚的最佳工艺条件为:反应温度100℃,反应压力为0.20-0.35MPa,催化剂用量为1.5%,n(丙烯醇)∶n(EO)为5∶1,反应时间为2h,EO转化率达97.35%。  相似文献   

5.
以硝酸锆为锆源,以阴离子表面活性剂十二烷基硫酸钠(SDS)为模板剂,S2O8^2-浸渍无定形Zr(OH)4,制得介孔S2O8^2-/ZrO2固体超强酸,通过N2吸附-脱附、XRD分析、Hammett非水滴定、TEM等方法,考察了不同焙烧温度对S2O8^2-/ZrO2介孔超强酸晶体结构、酸强度等性能的影响。结果表明,当焙烧温度600℃,S2O8^2-/ZrO2样品比表面积为140m2/g,平均孔径在3~4nm之间,酸强度H0≤-12.7,为介孔相固体超强酸。  相似文献   

6.
SO42-/Fe2O3型固体超强酸的制备及酯化催化活性的研究   总被引:6,自引:3,他引:6  
研究了由FeSO4·7H2 O直接焙烧制备SO2 -4/Fe2 O3 型固体超强酸时 ,焙烧温度、焙烧时间对催化剂性能的影响 ,并对制得的SO2 -4/Fe2 O3 型固体超强酸催化剂 ,测定了其SO2 -4与Fe2 O3 的摩尔比、表面酸度、酯化催化活性等数据 ,得到了SO2 -4/Fe2 O3 型固体超强酸的最佳制备条件 :焙烧温度 5 5 0℃ ,焙烧时间 5h。在此条件下 ,制得的SO2 -4/Fe2 O3 型固体超强酸催化剂中SO2 -4与Fe2 O3 的摩尔比为 1.71时 ,相应的表面酸度最大 (3.4 7mmol/g) ,对酯化反应的催化活性最好 ;SO2 -4与Fe2 O3 的摩尔比低于或高于这一数值 ,对应的表面酸度值都降低 ,对酯化反应的催化活性也降低。适量吸水会使SO2 -4/Fe2 O3 固体超强酸催化剂的表面酸度增加 ,从而使其对酯化反应的催化活性提高 ,但吸水过多 ,反而会导致其对酯化反应的催化活性丧失  相似文献   

7.
采用固体超强酸S2O2-8/Fe2O3-TiO2-Nd2O3为催化剂,薄荷醇和乙酸为原料合成乙酸薄荷酯.考察了酸醇摩尔比、催化剂用量、反应时间、催化剂的重复使用次数对酯化率的影响.结果表明:采用此催化剂催化合成乙酸薄荷酯是可行的,其最佳反应条件为:醇酸摩尔比1∶ 1.8、催化剂用量0.6g(占薄荷醇质量的3.85%)、反应时间6h、反应温度为130℃左右,酯的产率在97%以上.该催化剂对设备没有腐蚀性、与产品分离简单、可回收重复使用;由此催化剂催化合成的乙酸薄荷酯色泽好、气味纯正.  相似文献   

8.
为提高矿井CH4浓度检测中催化元件的稳定性和可靠性,针对催化元件中催化剂性能这一核心问题进行研究是解决问题的关键.对催化剂结构的表征以及对催化元件工作性能和催化剂反应性能进行了测试,结果表明:经900℃焙烧处理的催化剂载体Al2O3具有适宜于反应的颗粒分散度与孔径分布,催化元件表现出较好工作性能.采用真空干燥处理制备的负载量为3%的Pd/Al2O3催化剂具有较高的反应活性;但助剂的加入使得反应活性有所降低;采用HCl作竞争吸附荆可使活性纽分均匀分布于Al2O3内孔;栽体的二次成型工艺在一定程度上降低了电桥的零点漂移,提高了催化元件的稳定性.  相似文献   

9.
采用纳米技术法、低温陈化法、加入稀土元素制备了新型的纳米固体超酸催化剂S2O82-/N2O3-ZrO2-Fe2O3以合成7-羟基-4-甲基香豆素的化学反应作为探针反应考察了稀土含量、浸渍液浓度等对S2O82-/N2O3-ZrO2-Fe2O3催化性能的影响,找出了催化剂制备的最佳条件,该催化剂对酯化反应有很高的催化活性,并具有可重复使用、再生容易、不腐蚀设备、不污染环境等优点,有广泛的应用前景.  相似文献   

10.
采用等体积浸渍法分别制备了不同条件下的MgO-Al2O3复合载体和Ni/MgO-Al2O3催化剂,并考察了Ni/MgO-Al2O3用于环戊二烯(CPD)选择加氢制备环戊烯(CPE)的催化性能.采用X射线衍射(XRD)、BET等技术对催化剂进行了表征,考察了焙烧温度对Ni/MgO-Al2O3催化剂结构的影响.研究结果表明,复合载体与催化剂焙烧温度分别为700℃、450℃,NiO负载量为15%时,制备的催化剂比表面积和孔径大小适宜,催化剂的催化性能最好.  相似文献   

11.
以皮胶原纤维为模板剂,硫酸锆为锆源,掺杂稀土Nd元素制备SO42-/ZrO2-Nd2O3固体酸。通过TG、XRD、FT-IR、SEM以及N2吸附脱附分析等表征了制备条件对SO42-/ZrO2-Nd2O3固体酸结构的影响。结果表明,SO42-/ZrO2-Nd2O3固体酸较好地保持了模板的纤维结构,添加稀土Nd元素能有效抑制晶粒增长,ZrO2-Nd2O3晶粒尺寸为5.1~11.6 nm,比表面积为63.96 m2/g;以乙酸和正丁醇的酯化反应为模型反应考察SO42-/ZrO2-Nd2O3固体酸的催化活性,催化剂活性较高,重复使用5次,乙酸的转化率仍可达到85%,表现出较好的重复使用性,具有一定的工业应用前景。  相似文献   

12.
固体超强酸S2O8^2-/ZrO2催化合成缩醛   总被引:2,自引:0,他引:2  
通过沉淀、老化、过滤、洗涤、干燥、浸渍和焙烧等过程,由ZrOCl2和(NH4)2S2O8制备了S2O8^2-/ZrO2催化剂。用XRD,FT—IR,NH3-TPD对其进行了表征,研究了焙烧温度对其酸性、结构和催化性能的影响。XRD结果表明具有较高T型晶相峰。FT—IR分析表明S2O8^2-/ZrO2表面以双桥鳌合状配位化合物形式结合。研究了醛醇物质的量比、催化剂用量、反应时间等因素对产品收率的影响。结果表明,在n(丁醛)/n(乙二醇)=1:1.4,催化剂质量分数为0.25%,反应时间为50min的最佳条件下,丁醛乙二醇缩醛的收率可达95.8%;在n(苯甲醛)/n(乙二醇)=1:1.25,催化剂质量分数为0.5%,反应时间为50min的最佳条件下,苯甲醛乙二醇缩醛的收率可达88.8%。  相似文献   

13.
不同负载量的Fe/Al2O3催化剂分别以浸渍法、共沉淀法和溶胶-凝胶法制得,对比评价了不同方法制备的催化剂样品以CO为还原剂,选择性催化还原SO2的活性。研究表明,铁催化剂有较高的去除SO2的活性,制备方法对催化剂活性具有显著影响。其中溶胶-凝胶法和共沉淀法最高活性分别可以达到95%和85%左右;而浸渍法样品的活性较差,最高转化率不到60%。3种不同组分催化剂的活性在低温时并不明显,在高温时明显地显示出高的负载量具有高的活性。  相似文献   

14.
通过正交试验优化了三元稀土固体超强酸催化剂S2O2-8/Nd2O3-ZrO2-Al2O3的制备条件,最优条件为:陈化温度为-15℃,浸渍液浓度为1.5mol/L,焙烧温度为500℃.经过红外光谱法、X射线衍射法、透射电镜法对制备的催化剂进行了表征,结果表明:SO2-4与催化剂表面形成的是桥式双配位,而且拥有高催化性能;催化剂表面还呈现晶态结构,确定为表面催化;该催化剂其平均粒径小于17nm,处于纳米尺度.  相似文献   

15.
在Fe2O3颗粒的悬浮液中以硅酸钠为硅源,稀盐酸调节反应体系的pH值,合成SiO2-Fe2O3核-壳粒子.研究Fe2O3表面包覆SiO2的影响因素,确定最优改性剂和改性条件.采用XRD、SEM对表面改性前后的Fe2O3进行表征,用酸溶率评价包膜效果.以硅酸钠作为硅源,在反应温度85℃、pH值为9~10、改性时间为2 h时,制备出SiO2-Fe2O3复合颜料.包覆后的Fe2O3的耐温性和耐酸性显著提高,干粉耐温性达到1000℃.  相似文献   

16.
采用Ti-C-Al-Fe2O3反应体系,结合自蔓延高温合成(SHS)和铸造两种工艺,制备TiC-Al2O3钢基复合材料.对Ti-C-Al-Fe2O3体系进行了热力学计算,并结合XRD及DSC分析,为本体系合成TiC,Al2O3提供理论依据.热力学计算表明:在1600℃的钢液引燃的SHS反应过程中,只能生成Al2O3,TiC两种产物.通过XRD分析也证明了在反应产物中只有Al2O3,TiC两种物质形成.并对本体系的动力学进行分析,结果表明,紧实率为55%~65%的预制块,反应进行的最充分,钢液的浸渗能力最强;陶瓷增强颗粒尺寸随着过量Al元素的增加而逐渐减小并且分布更均匀.  相似文献   

17.
制备固体酸催化剂SO42-/TiO2-Fe2O3,用于柠檬酸三正丁酯的合成试验.考察了反应时间、初始进料物质的量比、催化剂用量对反应产率的影响,反应最佳条件为:醇酸比6:1,催化剂用量2.0g(相对于0.1mol的柠檬酸),加热回流反应时间3h,转化率达94.5%,纯度大于99.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号