首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
采用压缩实验法在Gleeble-1500热模拟实验机上测定了33Mn2V钢在恒定温度和恒定速度下的变形抗力.研究结果表明:33Mn2V钢热变形的流变应力随温度的升高和应变的增大而减小.以Kumar本构模型为基础建立了33Mn2V钢热变形的本构方程,同时也通过本构模型计算值与实验所得的数据进行比较,表明该模型能够满足工程应用精度.  相似文献   

2.
采用Gleeble-3500热模拟试验机对X100管线钢进行单道次压缩试验,研究其变形抗力与应变量、应变速率和变形温度的关系,利用回归分析确立合适的变形抗力数学模型,并将模型预测值与试验值进行比较。结果表明,变形温度对X100管线钢变形抗力影响显著;高温低应变速率更有利于X100管线钢回复和再结晶的发生;应变速率过高会引起非稳态变形,不利于X100管线钢轧制过程的控制;利用回归分析确定的变形抗力模型能够准确预测X100管线钢的变形抗力,相关系数为0.986。  相似文献   

3.
采用Gleeble-3500热模拟机对Ti-9.8Mo-3.9Nb-2V-3.1Al合金进行了室温~800 ℃范围内的热压缩变形试验,应变速率0.1 s-1.结果显示,在室温~300 ℃和500~800 ℃范围内,合金的变形抗力随温度的升高而降低,但是在300~500 ℃出现了异常的变形抗力随温度升高而升高的现象.最后讨论了热压缩变形行为对于试验结果的影响.  相似文献   

4.
在φ340机组上进行非调质36Mn2V和37Mn5油井管钢工艺试验,对比分析二者组织性能.研究36Mn2V钢中微合金元素V的碳氯化物析出对其组织性能的影响。结果表明。36Mn2V、37Mn5钢可分别用于高钢级N80-1和低钢级J55、K55油井管的生产,36Mn2V非调质钢在高温形变诱导下析出V(C、N),促进了晶内细小铁素体和珠光体的析出,反之细晶铁素体析出促进了V(C、N)沿y/a界面弥散析出,故而显著改善了36Mn2V非调质钢组织性能。  相似文献   

5.
热变形参数对Ti-15-3合金流动应力的影响   总被引:4,自引:0,他引:4  
在Gleeble-1500热模拟机上对Ti-15-3合金试样进行了热压缩试验,以获得不同应变、应变速率和温度下材料的流动应力。根据相应的应力曲线研究了该合金在高温时的流动特性,并采用神经网络的方法建立了该合金高温变形抗力与应变、应变速率和温度对应关系的预测模型。结果表明,神经网络能够较精确地预测材料的流动应力。  相似文献   

6.
利用圆柱体单轴压缩实验获得高锰奥氏体无磁钢在变形温度为900~1 100℃、应变速率为0.1~30.0 s-1条件下的真应力-真应变曲线。分析变形温度、应变速率和变形程度对变形抗力的影响,建立高锰奥氏体无磁钢的变形抗力模型,并与实验变形抗力进行对比分析,表明该模型具有良好的拟合精度。将变形抗力模型嵌入基于刚塑性有限元法的数值仿真模型,并对实际轧制过程进行模拟,结果表明,轧制力计算值与实测值的偏差控制在7%以内。  相似文献   

7.
高强钢变形抗力实验研究   总被引:1,自引:0,他引:1  
利用MMS-200热模拟试验机测定不同变形温度、变形速率下高强钢的变形抗力,分析各工艺参数对变形抗力的影响,通过回归分析得出该钢的变形抗力数学模型.  相似文献   

8.
铝合金变形抗力的实验研究   总被引:1,自引:0,他引:1  
采用恒应变速率凸轮式形变压缩试验机试验了四种铝合金材料的变形抗力,分析了应变率和应变速率对变形抗力的影响,结果表明随应变的增加,变形抗力以近似幂函数关系增加,在此基础上建立了简单、适用的变形抗力计算模型。  相似文献   

9.
在应变量为0.6(ε=0.6)、不同温度(523~723 K)和应变速率(0.001~10 s-1)条件下,利用Gleeble-1500D热模拟试验机,对铸态ZK60镁合金进行热压缩变形行为的研究,分析变形温度和应变速率对ZK60镁合金压缩变形行为的影响规律,即在相同应变速率条件下,随着变形温度的升高,合金的峰值应力降低。在相同温度条件下,随着应变速率的增大,合金的流变应力增大。计算其应变速率敏感指数m值为0.14和表观激活能Q值为226~254 kJ/mol。研究表明,在温度为573~673 K、应变速率为0.001~0.1 s-1时,合金发生动态再结晶。  相似文献   

10.
7055铝合金高温压缩变形的流变应力   总被引:4,自引:0,他引:4  
在Gleeble 1500热模拟试验机上,采用高温等温压缩试验,研究了7055铝合金在250~450℃温度范围内压缩变形的流变应力变化规律.结果表明,应变速率和变形温度的变化强烈影响合金的流变应力,流变应力随变形速率的提高而增大;随变形温度的提高而降低.7055铝合金高温变形时的流变应力可用Zener Hollomon参数来描述.  相似文献   

11.
研究合金成分为18 M n-0 .15C-3Si-3 Al的高锰T RIP/T W IP钢(18 M n钢)在 40 ~200oС 范围内的拉伸变形行为,分析形变温度对其拉伸性能、相组成和显微组织的影响. 采用EBSD取向成像分析方法着重研究了〈111〉取向的奥氏体晶粒在拉伸过程中的相组成变化. 结果表明,随着形变温度的升高,18 M n钢的抗拉强度和延伸率大体上呈降低趋势,T RIP效应很快消失,形变孪晶和位错滑移取代马氏体相变成为主要的形变机制,即奥氏体晶粒内形变机制的变化为:α’- M相变→ε- M相变→形变孪晶→位错滑移.18 M n钢中较硬的铁素体在形变过程中能提高材料的加工硬化率,但同时也会引起低温脆性  相似文献   

12.
对一种8%Cr冷轧辊用钢在950~1200℃以0.1~10s~(-1)的变形速率进行热压缩变形,通过流变曲线分析、动力学分析及热加工图技术等方法表征其热变形时的力学行为,并对变形后的显微组织进行观察。结果表明:Cr8N钢的加工硬化率和流变应力随着变形温度的升高和应变速率的降低而降低,功率耗散百分数随着Z参数的增大而降低;上述变形条件下Cr8N钢的热变形激活能为542kJ/mol,加工硬化指数为5.25;获得了该钢的热变形方程以及Z参数和峰值应力间的关系。  相似文献   

13.
通过对纯铌挤压管坯和冷变形管材的显微组织及力学性能的分析,研究了形变程度和热处理温度对材料的组织和性能的影响.试验结果表明,经800~850℃挤压的纯铌管坯,完全再结晶退火温度约为1 150℃,挤压管坯经87%冷变形后,完全再结晶退火温度约为1 100℃;纯铌管材完全再结晶退火温度随着形变总加工率的增加,基本呈下降趋势,且影响比较明显.  相似文献   

14.
通过Gleeble热模拟试验获得不同变形条件下37Mn5钢的应力应变试验数据,采用不同模型对试验数据进行回归,找到适合37Mn5钢高温变形时的变形抗力模型。同时,通过计算得到了该钢的动态再结晶动力学方程和动态再结晶体积分数表达式。将以上模型的计算值与实测值进行比较,结果表明,计算值与实测值非常接近。  相似文献   

15.
根据离异共析原理,对GCr15钢采用先促进碳化物析出,再变形破碎的工艺,即分别采用两道次变形工艺和三道次变形工艺在Gleeble-2000型热模拟机进行变形实验,对比不同变形工艺下GCr15钢的显微组织和硬度,分析变形道次、碳化物析出区间冷却起始温度和冷却速度对组织球化的影响。结果表明:三道次变形工艺在实现GCr15钢组织球化和材料软化方面较两道次变形工艺有明显优势;对于GCr15钢,在三道次变形工艺中,把未再结晶区变形温度控制在900℃,并在900~800℃采用1℃/s的冷却速度,能够形成大量的球化组织,材料明显软化,可实现钢大部分组织在线球化。  相似文献   

16.
利用Gleeble-3500热力模拟试验机在950-1200℃,应变速率为0.1-10s-1条件下进行了含稀土的23Cr型双相不锈钢的热压缩变形,获得了流变曲线,建立了热变形方程,分析了变形组织。结果表明:在流变曲线上既存在峰值应力也有稳态应力;在高温低应变速率条件下,峰值应变减小。上述变形条件下,试验钢的热变形激活能Q=436kJ/mol,表观应力指数n=3.91,热变形方程为:ε=2.41×1016[sinh(0.012σs)]3.91exp (-436000/RT)。奥氏体的动态再结晶在试验钢的动态软化机制中起主导作用且随着温度的升高和应变速率的降低越来越充分;而大应变下,铁素体的软化主要表现为较充分的动态回复。稀土元素影响了热变形时两相中Mo元素的再分配是稀土改善双相不锈钢高温塑性的重要原因之一。稀土使Mo在铁素体中浓度较低温度下降低,高温下升高;而奥氏体相中,使得Mo浓度在较低温度下升高而高温下降低。  相似文献   

17.
利用Gleeble-1500热模拟实验机研究37Mn5钢在变形温度为800~1150℃、变形速率为0.1~10s^-1条件下的热压缩变形行为。采用应变硬化率-应力曲线图较精确地获得峰值应力,并用双曲正弦方程描述37Mn5钢热压缩变形过程中的峰值应力与Zener—Hollomon参数的关系。回归分析得到方程中变形激活能及各材料常数的值,获得37Mn5钢在高温条件下的流变应力本构方程。结果表明,采用该本构方程计算出的流变应力值与实验所得应力值非常接近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号