首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
将苯并噻吩(BT)和二苯并噻吩(DBT)分别溶于正辛烷配成模型油,以H2O2为氧化剂,研究普通加热和微波辐射加热下磷钼酸催化模型油和直馏柴油的氧化脱硫效果。分析了催化剂用量、H2O2初始浓度、反应温度和反应时间等对DBT、BT脱除率的影响,分析了不同萃取条件下的柴油脱硫率和回收率。结果表明,微波辐射加热下,DBT、BT的脱除率比普通加热分别提高了7.7倍和3.7倍;在70℃和400W微波功率下,DBT、BT的脱除率分别为95.4%和62.3%;催化剂用量、H20。初始浓度、反应温度和反应时间等对DBT、BT的氧化脱除率均有影响;v(萃取剂)/v(柴油)为1/4时,采用DMF萃取1次,柴油的脱硫率为61.8%,回收率为98.4%,萃取次数增加,柴油脱硫率提高,而回收率明显下降。  相似文献   

2.
微波辐射磷钼酸铈盐催化柴油氧化脱硫研究   总被引:1,自引:0,他引:1  
研究微波辐射下磷钼酸铈盐催化模型油和直馏柴油的氧化脱硫反应,考察不同萃取条件对柴油的脱硫率和收率的影响。结果表明,相同反应条件下,相对于普通加热,微波辐射加热时二苯并噻吩(DBT)、苯并噻吩(BT)的脱除率分别提高了4.2倍和3.8倍;在70℃和400 W微波功率下加热2 h,DBT、BT的脱除率分别为95.6%和74.8%;对m(催化剂)/m(柴油)为7.1 mg/g、H2O2初始浓度为0.44 mol/L的柴油,经70℃和4 0 0 W微波功率加热2 h,再在V(萃取剂)/V(柴油)为1/4的条件下用DMF萃取1次,柴油脱硫率为69.6%,收率为97.5%;萃取次数增加,柴油脱硫率提高,但收率明显下降。  相似文献   

3.
杂多酸催化氧化脱除柴油中硫化物的研究   总被引:1,自引:0,他引:1  
以活性炭负载磷钨杂多酸(HPW)为催化剂,H2O2为氧化剂,对含二苯并噻吩(DBT)模拟柴油进行催化氧化脱硫研究.考察了负载量、反应时间、反应温度及氧化剂与模拟柴油体积比V(O)V(M)对脱硫率的影响.结果表明:活性炭负载磷钨杂多酸对模拟柴油脱硫具有较好的催化活性;最适宜的催化氧化条件是HPW的负载量60%~70%,反应时间为1.5h;温度为60℃;V(O)V(M)=15;此条件下,DBT的脱除率为97.4%.  相似文献   

4.
采用溶胶-凝胶法制备改性催化剂Cr-Mo/SiO2。通过红外光谱、X射线衍射、比表面和孔隙分析等方法对Cr-Mo/SiO2进行表征,考察Cr-Mo/SiO2用量、H2O2用量、反应温度和反应时间对模型油和直馏柴油氧化脱硫效果的影响。结果表明,各反应条件对模型油氧化脱硫效果均有一定影响,二苯并噻吩较苯并噻吩更易脱除。直馏柴油氧化脱硫正交试验结果显示,各因素对脱硫率的影响大小排序为:反应温度〉H2O2用量〉Cr-Mo/SiO2用量〉反应时间。最佳反应条件下,可使直馏柴油硫含量由994μg/g降至128μg/g,脱硫率达87.11%,油品回收率不低于98%。  相似文献   

5.
氧化-萃取耦合模拟油品深度脱硫研究   总被引:2,自引:0,他引:2  
以分别溶有苯并噻吩(BT)和二苯并噻吩(DBT)的正辛烷溶液为模拟油品(硫含量均为1 540μg/g),以WO3/ZrO2固体超强酸为催化剂,H2O2为氧化剂,N,N-二甲基甲酰胺(DMF)为萃取溶剂,考察氧化-萃取耦合工艺参数对BT和DBT脱除率的影响,确定模拟油品氧化-萃取耦合脱硫的最佳工艺条件,并探讨氧化-萃取耦合脱硫机理。结果表明,在氧化-萃取耦合脱硫优化条件下,即耦合脱硫温度60℃,耦合脱硫时间90 min,氧化剂用量V(油)∶V(H2O2)=33.3∶1,催化剂用量0.02 g/mL油,萃取溶剂用量V(溶剂)∶V(油)=1∶1,此时BT和DBT脱除率分别达到92.40%和97.46%。  相似文献   

6.
过氧化氢/甲酸/硫酸体系氧化脱硫研究   总被引:2,自引:0,他引:2  
柴油中的硫化物可以用有机酸催化过氧化氢氧化法脱除,脱硫效率与体系酸性强弱有关。强酸性的硫酸能调节反应体系的酸性,提高脱硫效率。在苯并噻吩/正辛烷配成的模拟柴油中,以过氧化氢/甲酸/硫酸作氧化脱硫体系,考察了硫酸的催化性能以及反应条件对氧化脱硫率的影响。结果表明,在过氧化氢、甲酸、硫酸、苯并噻吩物质的量比为6.04:2.12:1.50:1.0的条件下,脱硫率可达95%以上;在反应体系中加入微量的硫酸,一方面可以显著增加体系酸性,催化过氧甲酸生成,另一方面硫酸本身参与反应生成具有强氧化性的过二硫酸,从而显著提高体系的反应速率和氧化脱硫率,提高幅度达10%~29%;硫酸用量、甲酸用量、反应时间和温度对脱硫率均有影响;过多的硫酸使过氧化氢不稳定,无效分解增加,脱硫率反而下降,硫酸与苯并噻吩最合适的物质的量比在0.30~2.10。  相似文献   

7.
直馏柴油液-液催化氧化脱硫研究   总被引:11,自引:3,他引:11  
针对柴油加氢脱硫技术设备投资和操作费用高,柴油H2O2氧化脱硫技术又存在氧化剂价格高、柴油收率低和有含硫污水排放等技术经济问题,开发了一种新型直馏柴油催化氧化脱硫方法.采用液相TS-2催化剂和空气氧化剂,在常压低温下对直馏柴油进行催化氧化,辅以EA-1复合萃取剂萃取和白土吸附脱除氧化柴油中硫化物.实验结果表明,在60℃、0.1 MPa、反应时间5 min、催化剂和柴油体积比0.1条件下可将柴油硫含量从1 658μg·g-1降至133μg·g-1,柴油收率达到97.5%,脱硫柴油硫含量符合世界燃料规范Ⅱ类柴油标准.与现有柴油脱硫方法相比较,本文方法具有投资和操作费用低、操作条件缓和、柴油收率高和无"三废"排放的优点.  相似文献   

8.
磷钨酸铜的制备及其氧化脱硫性能研究   总被引:1,自引:0,他引:1  
采用磷钨酸和硝酸铜为原料合成磷钨酸铜,以磷钨酸铜为催化剂,H2O2为氧化剂应用于模拟油氧化脱硫反应。考察了不同的氧化脱硫体系、反应温度、催化剂质量、H2O2的体积和反应时间对脱硫效果的影响。结果表明,H2O2/磷钨酸铜/十六烷基三甲基溴化铵(CTAB)体系具有最高的脱硫率,当反应的温度为40℃,催化剂的质量为0.01g,H2O2加入体积为0.5mL,反应的时间为1h,二苯并噻吩的脱除率为93%,催化剂循环使用5次后,脱硫率没有明显下降。  相似文献   

9.
直馏柴油催化氧化脱硫工艺中试研究(Ⅰ)   总被引:2,自引:0,他引:2  
针对柴油加氢脱硫技术设备投资和操作费用高,柴油H2O2氧化脱硫技术又存在氧化剂价格高、柴油收率低和有含硫污水排放等技术经济问题,开发了一种新型直馏柴油催化氧化脱硫方法,在此为其中试试验研究.直馏柴油催化氧化脱硫中试装置由催化氧化反应、催化剂再生回收、萃取脱硫与萃取剂回收等四个单元组成;反应器为静态混合反应器;在建立的中试装置上对直馏柴油催化氧化脱硫操作条件进行了优选实验:在表观停留时间3~5 min、反应温度60℃、反应物料循环量1 000 L/h、氧化催化剂/柴油体积比为0.24和柴油/萃取剂体积比为2.5的最佳实验操作条件下,成品柴油的硫含量从2 273 μg/g降到106 μg/g,柴油硫含量符合欧洲Ⅱ类柴油标准(≤300 μg/g),脱硫率达到95.34%,柴油收率为97.23%.  相似文献   

10.
HPW/SBA-15的制备及其催化氧化脱硫性能研究   总被引:1,自引:0,他引:1  
以SBA-15分子筛为载体、磷钨杂多酸(HPW)为活性组分,制备磷钨酸负载型催化剂.以HPW/SBA-15为催化剂、双氧水为氧化剂对模拟柴油进行催化氧化脱硫研究,考察磷钨酸负载量、反应时间、温度和剂油比对脱硫率的影响,得到了优化的催化氧化条件:磷钨酸负载量为30%,反应温度80℃,反应时间60min,剂油比1︰6时,脱硫率可达97.8%.  相似文献   

11.
通过复分解法合成了3种基于Mo8O4-26阴离子的四烷基铵钼多金属氧酸盐,并将其作为催化剂,质量分数为30%H2O2溶液为氧化剂、1-己基-3-甲基咪唑四氟硼酸盐离子液体([C6MIM]BF4)为萃取剂,用于柴油的催化氧化脱硫。分别考察了催化剂摩尔分数、反应温度、剂油体积比、反应时间、氧化剂用量等条件对模拟油品脱硫率的影响,确定了最优化反应条件,并将其应用于实际油品的脱硫中。结果表明,在60℃反应条件下,反应时间1h,当催化剂摩尔分数为5%、剂油体积比为1∶5、n(氧化剂)/n(硫化物)为6∶1时,该催化氧化-萃取体系对模拟油品(初始含硫质量分数为1 164μg/g)有较高的脱硫率,一次脱硫率可达95%以上。对抚顺石化公司生产的催化裂化柴油(初始含硫质量分数为850μg/g)一次脱硫率约为92%。  相似文献   

12.
在没有任何有机溶剂和卤素的条件下,以质量分数30%的H2O2为氧化剂,Na2WO4·2H2O为催化剂,在酸性离子液体[(CH2)4SO3HMIm]TSO中,将柴油中的噻吩硫氧化为矾类物质,并通过离子液体将其萃取,同时考察了反应温度、反应时间和离子液体用量等因素对氧化脱硫反应的影响,得出最佳反应条件:3mL油样(含硫质量分数为500μg/g),n(离子液体)/n(Na2WO4·2H2O)=40:1,0.7mL双氧水,333K,2h,脱硫率为97.4%。反应结束后,通过简单的倾倒将油样和催化剂分离,重复使用4次,其催化活性基本不变。  相似文献   

13.
采用酸性离子液体和磷钨酸合成了7种新型的咪唑类磷钨杂多酸盐离子液体,分别用XRD、TG及SEM进行了表征。XRD表征表明7种磷钨杂多酸盐均保持有keggin结构;TG表征表明其热稳定性良好;SEM表征说明其表面结构良好。将其用于模拟油品的氧化脱硫反应,考察了反应时间、反应温度、H2O2的用量等因素对此反应的影响。结果表明,在反应温度为45℃,反应时间为1h,n(S)/n(催化剂)=300:1,n(H2O2)/n(s)=4:1的条件下,脱硫率可达到99.72%。反应结束后,催化剂容易分离,干燥后可重复使用7次,脱硫率没有明显下降。  相似文献   

14.
随着环境法的日益完善,燃料油的低硫化成了亟待解决的问题.为达到深度脱除油品中硫化物的目的,提出将离子液体应用于萃取一催化氧化脱除油品中噻吩类硫化物.合成了三种酸性的离子液体1-甲基-3-乙基咪唑硫酸氢盐([Emim]HSO4)、1-甲基-3-丁基咪唑硫酸氢盐([-Bmim]HSO4)、1-甲基-3-辛基咪唑硫酸氢盐([-Omim]HSO。)分别用作萃取剂和催化剂,30%H202作为氧化剂,噻吩溶于正辛烷配置成模拟油,用于脱硫实验.考察了反应温度、反应时间、双氧水的加入量等因素对脱硫效果的影响.实验结果表明,脱硫效果的顺序为:[Omim]HSO。〉[-Bmim]HSO。〉[-Emim]HSO4.同时在[-Bmim]HSO4-H2O2体系中,脱硫的最佳条件为:剂油比为1.0,反应温度85℃,反应时间4h,氧硫比为28,脱硫率可达到97.6%.利用硫酸氢盐类的离子液体脱硫可达深度脱硫的标准.  相似文献   

15.
采用超声氧化法脱除柴油中硫化物,降低了柴油的硫含量。实验考察了氧化温度、氧化时间、氧化剂体积分数、催化剂体积分数等条件对柴油脱硫效果的影响。结果表明,选用甲酸与硫酸混合物作为催化剂,催化剂体积分数为2%(催化剂中甲酸与硫酸体积比为3∶2)、氧化剂体积分数为9%、反应温度为70 ℃、反应时间为60min时,采用超声氧化法脱除重油催化裂化柴油中的硫化物,再经N,N-二甲基甲酰胺(DMF)萃取氧化,柴油脱硫率达到83%,十六烷值有所升高,提高了柴油的质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号