首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A black conductive electrode with a resistivity of 6.75×10−4 Ω cm was fabricated by doping silicon monoxide into aluminum by simple thermal evaporation. The relative optical reflectance of such electrode layers within the visible spectral range was between 0.12 and 0.05. The black electrode was incorporated in an organic light-emitting diode (OLED) by sequential deposition of α-napthylphenylbiphenyl diamine, tris-(8-hydroxyquinoline) aluminum and the black layer on indium-tin-oxide-coated glass substrates. The black layer reduced the reflection of ambient light entering the device and resulted in a significant increase of the OLED display contrast ratio. The electroluminescence properties of the device incorporating the black layer were investigated.  相似文献   

3.
4.
一种基于照明目的的有机白光发光二极管   总被引:2,自引:0,他引:2  
研制了一种以照明为目标的有机白光发光二极管(WOLED),该二极管在8V时的色度坐标为(x=0.319,y=0.337),对应的显色指数(Ra)为85.4,色温(Tc)为6151K。该二极管是含NPB和CBP两个基质的多层掺杂型结构器件;此外,NPB{4,4‘-bis[N-(1-naphthyl)-N-phenylamino]bipheonyl}除了用作绿光和黄光基质外,还用作空穴传榆材料,CBP{4,4‘-N,N‘-dicarbazole-biplaenyl)用作红光磷光配合物的基质材料。3个掺杂层分别提供白光发射的红、黄和绿光成分,而蓝光成分则来自于空穴传榆层NPB本身的发射。该器件在直流电流密度为0.1mA/cm^2时最大白光发光效率可达5.6cd/A(3.9lm/W),在15V时达到的最大亮度为5100ccl/m^2。其性能参数达到了白光照明光源的要求。  相似文献   

5.
In this paper, we report a flexible inorganic/organic heterostructure light-emitting diode, in which inorganic ZnO nanowires are the optically active components and organic polyaniline (PANI) is the hole-transporting layer. The fabrication of the hybrid LED is as follows, the ordered single-crystalline ZnO nanowires were uniformly distributed on flexible polyethylene terephthalate (PET)-based indium-tin-oxide-coated substrates by our polymer-assisted growth method, and proper materials were chosen as electrode and carrier. In this construction, an array of ZnO nanowires grown on PET substrate is successfully embedded in a polyaniline thin film. The performance of the hybrid device of organic-inorganic hetero-junction of ITO/(ZnO nanowires-PANI) for LED application in the blue and UV ranges are investigated, and tunable electroluminescence has been demonstrated by contacting the upper tips of ZnO nanowires and the PET substrate. The effect of surface capping with polyvinyl alcohol (PANI) on the photocarrier relaxation of the aqueous chemically grown ZnO nanowires has been investigated. The photoluminescence spectrum shows an enhanced ultraviolet emission and reduced defect-related emission in the capped ZnO NWs compared to bare ZnO. The results of our study may offer a fundamental understanding in the field of inorganic/organic heterostructure light-emitting diode, which may be useful for potential applications of hybrid ZnO nanowires with conductive polymers.  相似文献   

6.
Optically transparent, mechanically flexible displays are attractive for next-generation visual technologies and portable electronics. In principle, organic light-emitting diodes (OLEDs) satisfy key requirements for this application-transparency, lightweight, flexibility, and low-temperature fabrication. However, to realize transparent, flexible active-matrix OLED (AMOLED) displays requires suitable thin-film transistor (TFT) drive electronics. Nanowire transistors (NWTs) are ideal candidates for this role due to their outstanding electrical characteristics, potential for compact size, fast switching, low-temperature fabrication, and transparency. Here we report the first demonstration of AMOLED displays driven exclusively by NW electronics and show that such displays can be optically transparent. The displays use pixel dimensions suitable for hand-held applications, exhibit 300 cd/m2 brightness, and are fabricated at temperatures suitable for integration on plastic substrates.  相似文献   

7.
We study the grating-assisted light-emitting diode, an LED design for high brightness based on a resonant cavity containing one- or two-dimensionally periodically corrugated layers (grating). We give in detail a generally applicable electromagnetic analysis based on the rigorous coupled-wave theory to calculate the extraction efficiency of spontaneous emission in a periodically corrugated layer structure. This general model is then specified on the grating-assisted resonant-cavity LED, showing simulated efficiencies of more than 40%.  相似文献   

8.
We have fabricated highly stable organic electroluminescent devices based on spin-coated poly-p-phenylene-vynylene (PPV) thin films. The electrical properties of aluminum cathode, prepared by ion beam assisted deposition, on PPV have been investigated and compared to those by thermal evaporation. Although energetic particles of Al assisted by Ar+ ion may damage the organic material, IVL characteristics are improved by applying thin Al buffer layer. In addition, a dense Al cathode inhibits the permeation of H2O and O2 into PPV film through pinhole defects, and thus retards dark spot growth. It may be deduced from highly packed structure of Al cathode with an increase in the contact area between Al and PPV that reduce the contact resistance. In conclusion, the lifetime of organic light-emitting device (OLED) has been extended effectively by dense Al film through ion beam assisted deposition process.  相似文献   

9.
Zhang J  Fu Y  Wang C  Chen PC  Liu Z  Wei W  Wu C  Thompson ME  Zhou C 《Nano letters》2011,11(11):4852-4858
Active matrix organic light-emitting diode (AMOLED) display holds great potential for the next generation visual technologies due to its high light efficiency, flexibility, lightweight, and low-temperature processing. However, suitable thin-film transistors (TFTs) are required to realize the advantages of AMOLED. Preseparated, semiconducting enriched carbon nanotubes are excellent candidates for this purpose because of their excellent mobility, high percentage of semiconducting nanotubes, and room-temperature processing compatibility. Here we report, for the first time, the demonstration of AMOLED displays driven by separated nanotube thin-film transistors (SN-TFTs) including key technology components, such as large-scale high-yield fabrication of devices with superior performance, carbon nanotube film density optimization, bilayer gate dielectric for improved substrate adhesion to the deposited nanotube film, and the demonstration of monolithically integrated AMOLED display elements with 500 pixels driven by 1000 SN-TFTs. Our approach can serve as the critical foundation for future nanotube-based thin-film display electronics.  相似文献   

10.
Thin silver film is widely used as the cathode in organic light-emitting diode displays and it is generally fabricated using the thermal evaporation method. But during the evaporation process, there is an inevitable outgassing problem and this creates high viscosity bubbles in melted silver. When the bubbles break, the high energy released scatters silver droplets which damage the silver surface. In this study, we were able to decrease the number of droplets from 6,171 to 278 with a degassing process of 400 °C for 6 h before proceeding with a thermal evaporation process.  相似文献   

11.
A high-efficiency pure white organic light-emitting diode was fabricated with lifetime approaching that of the low-excitation-energy (yellow) emitter containing counterpart, or six times that of the deep-blue counterpart. The white device was composed of two emission layers with mixed hosts of different compositions. They were respectively doped with yellow rubrene and deep-blue 4,4'-bis-[4-{N,N,N',N'- tetrakis-(4-fluoro-diphenylamino)-phenyl}-vinyl]-biphenyl. The resulting efficiency was 6.0 lm/W (12.4 cd/A) at 20 mA/cm(2). The long device lifetime may be attributed to the double mixed-host architecture employed that effectively dispersed the injected carriers into three different recombination zones and consequently diluted the damaging effect arising from the accumulated charge from un-recombined carriers, hence leading to a markedly improved lifespan.  相似文献   

12.
Sun XW  Huang JZ  Wang JX  Xu Z 《Nano letters》2008,8(4):1219-1223
An inorganic/organic heterostructure light-emitting diode consisting of the hole-transporting layer N, N'-di(naphth-2-yl)- N, N'-diphenylbenzidine (NPB) and n-type ZnO nanorods fabricated by hydrothermal decomposition is reported. Poly(methyl methacrylate) was used to form a smooth surface on top of ZnO nanorod array with ZnO nanorod tops exposed for subsequent NPB deposition. An unusual ultraviolet emission at 342 nm was observed in the electroluminescence spectrum. Compared to band gap energy of ZnO (3.37 eV), the excitonic emission is blue-shifted and broadened. The mechanism of the blue shift is discussed in terms of the energy band diagram of the heterostructure.  相似文献   

13.
The presence of compensated regions at the boundary of the p—n junction is established by measuring the distribution of the effective charge-center density in the space-charge region of semiconducting structures. The effect of these regions on the parameters of the capacitance-voltage characteristics and the features of the technological structure of light-emitting diodes are described. Translated from Izmeritel’naya Tekhnika, No. 1, pp. 49–52, January, 1998.  相似文献   

14.
In order to improve optical extraction efficiencies, we propose a nano-patterned organic light-emitting diode (OLED) which doesn't rely on high precision lithography nor rigorous periodicity. The nano-pattern is fabricated by spin-coating PS (poly-styrene) spheres on the substrate and carrying out reactive ion etching and flattening using dielectric material. The verification of the optical properties of the nano patterns was carried out by fabricating OLED-like structures using quantum dot and distributed Bragg reflector (DBR). As a result, the nano-patterned structure showed a 28% increase in optical efficiency compared to the non-patterned sample. In addition, the use of a prism sheet on the backside of a glass substrate also showed a 23% increase in optical efficiency by disturbing the total internal reflection between glass and air. In this way, the large area nano-patterns can be fabricated and applied to increasing the optical extraction in OLED.  相似文献   

15.
16.
We have realized a device based on the coupling of an organic light-emitting diode (with tri(8-hydroxyquinoline)aluminium for light emission) as an input unit with a photoconductive material as an output unit. Various photoconductive materials like pentacene, Cu-phtalocyanine and fullerene were investigated under green light illumination with an emission peak at 550 nm. Photocurrent measurements versus light intensity and bias voltage (applied between two 50 μm distant indium-tin oxide bottom electrodes for the current to flow through the materials) were realized at room temperature a photocurrent gain around 4 is obtained when the materials are subjected to a luminance of about 5000 cd/m2 and for bias voltage of − 50 V. Besides, it was shown that to obtain a device with a fast photocurrent response by switching the light off and on, it is necessary to apply a bias voltage higher than − 200 V in these conditions, the gain is multiplied by a factor of 3.  相似文献   

17.
We show an increase of the luminous power efficiency of a white organic light-emitting diode (LED) with three emitters by optimizing its spectrum and its extraction efficiency. To calculate this efficiency we use a model with four parameters: the spectra, extraction efficiencies, internal quantum efficiencies of three emitters, and the driving voltage. This luminous power efficiency increases by 30% by use of a spectrum close to the spectrum of the MacAdam limit. This limit gives the highest luminous efficacy for a given chromaticity. We also show that a white organic LED with an inefficient deep blue emitter can give the same luminous power efficiency as a white organic LED with a more efficient light blue emitter, because of their different fractions in the radiant flux. Tuning the extraction efficiency with a microcavity to the spectrum also increases the luminous power efficiency by 10%.  相似文献   

18.
We present a systematic study of the current-voltage characteristics and electroluminescence of gallium nitride (GaN) nanowire on silicon (Si) substrate heterostructures where both semiconductors are n-type. A novel feature of this device is that by reversing the polarity of the applied voltage the luminescence can be selectively obtained from either the nanowire or the substrate. For one polarity of the applied voltage, ultraviolet (and visible) light is generated in the GaN nanowire, while for the opposite polarity infrared light is emitted from the Si substrate. We propose a model, which explains the key features of the data, based on electron tunnelling from the valence band of one semiconductor into the conduction band of the other semiconductor. For example, for one polarity of the applied voltage, given a sufficient potential energy difference between the two semiconductors, electrons can tunnel from the valence band of GaN into the Si conduction band. This process results in the creation of holes in GaN, which can recombine with conduction band electrons generating GaN band-to-band luminescence. A similar process applies under the opposite polarity for Si light emission. This device structure affords an additional experimental handle to the study of electroluminescence in single nanowires and, furthermore, could be used as a novel approach to two-colour light-emitting devices.  相似文献   

19.
We report a compact light source that incorporates a semiconductor light-emitting diode, nanostructured distributed feedback (DFB) Bragg grating and spin-coated thin conjugated polymer film. With this hybrid structure, we transferred electrically generated 390?nm ultraviolet light to an organic polymer via optical pumping and out-couple green luminescence to air through a second-order DFB grating. We demonstrate the feasibility of electrically driven, hybrid, compact light-emitting devices and lasers in the visible range.  相似文献   

20.
Journal of Materials Science: Materials in Electronics - In recent years, the tunability of solid-state light sources has become an ideal feature for the illumination and exhibition industries....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号