首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cai  Chunhua  Qin  Ming 《Microsystem Technologies》2017,23(7):2727-2738

A bulk silicon comb-drive actuator with low driving voltage and large displacement is presented in this paper. The bulk silicon comb-drive actuator is fabricated by a simple bulk micromachining process based on the low temperature Au–Au bonding technology. A cascade folded beam is designed to improve the displacement of comb-drive actuator at low driving voltages. The instability of the whole system decreases by utilizing unequal wide comb fingers design. The fringing capacitance and the fabrication tolerances together with their effects on the performances of the comb-drive actuators are also discussed. The measurement results show that the capacitance change rate and the displacement change rate of the comb-drive actuator are 1.5 fF/V2 and 0.125 μm/V2, respectively. The displacement of the actuator can reach 28.5 μm at 15 V driving voltages. The experimental results of the comb-drive actuator are in good agreement with the modified theoretical predictions.

  相似文献   

2.
A hybrid micro-electrostatic actuator is presented. The actuator integrates a vertical comb driving (VCD) unit and a parallel-plate driving (PPD) unit. The hybrid actuator is fabricated using a one structural layer microfabrication process, i.e., MetalMUMPs instead of a two-layer microfabrication process needed for traditional vertical comb-drive actuators by taking advantage of the residual stress gradient in the MetalMUMPs nickel layer, which raises the moving parts of the actuator above the substrate after release. The hybrid actuator significantly simplifies the fabrication process for vertical comb-drive actuators, i.e., turning a process requiring two structural layers into a process requiring only one structural layer and thus avoids any misalignment between the two layers. The hybrid actuator can generate larger force and then a larger displacement than the actuator having only the VCD with the same area since no extra space is needed for the PPD unit which uses the moving electrode existing in the VCD unit and a fixed electrode under the VCD unit. The VCD and PPD units in the hybrid actuator are subject to the same driving voltage and work together to pull the moving parts of the actuator downward. A model is established for the hybrid actuator to analyze its displacement. The analytical results show that displacement of the moving part of the hybrid actuator is about half of the gap between the electrodes of the PPD unit. Prototypes are fabricated and tested. With a driving voltage of 150 V, the hybrid actuator achieved a measured displacement of 6.48 µm.  相似文献   

3.
 For conventional micromachines, in particular, micromotion convert mechanisms, the output points of the mechanism can move horizontally when input points move in the same direction. Therefore, we have proposed a three-dimensional motion convert mechanism whose output points can move vertically when the input points move in the horizontal direction. This 2-degree-of-freedom (DOF) mechanism consists of electrostatic comb-drive actuators and a basic mechanism with large-deflective elastic hinges. In this study, the characteristics of comb-drive actuators are analyzed. The electrostatic comb-drive actuator which is made up of polyimide is fabricated by CVD, RIE, Wet etching, etc., technologies. The relationship between the input (voltage) and the output (displacement) of the drive has been analyzed both theoretically and experimentally. Received: 26 December 1998 / Accepted: 4 January 1999  相似文献   

4.
Fabricating electrostatic micro actuator, such as comb-drive actuator, is one of the demanding areas of the MEMS technology because of the promising applications in modern engineering, such as, micro-switches, attenuators, filters, micro-lenses, optical waveguide couplers, modulation, interferometer, dynamic focus mirror, and chopper. For the fabrication, most of the cases silicon monocrystalline wafers are used through complex process. To etch the silicon substrates, researchers often use deep reactive-ion etching or anisotropic wet etching procedure which are time consuming and unsuitable for batch fabrication process. Again, resent research shows that comb-drive actuators need comparatively high voltage for actuation. In solving these problems, the study presents a copper based electrostatic micro actuator with low actuation voltage. Using wire electrical discharge machine (WEDM), the actuator is fabricated where a light weight flexible spring model is introduced. Capacitor design model is applied to present a voltage controlling electronic circuit using Arduino micro controller unit. The experimental result shows that the actuator is able to produce 1.38 mN force for 15 V DC. The experiment also proves that coper based actuator design using WEDM technology is much easier for batch processing and could provide the advantages in rapid prototyping.  相似文献   

5.
This paper presents a generalized model that describes the behavior of micromachined electrostatic actuators in conducting liquids and provides a guideline for designing electrostatic actuators to operate in aqueous electrolytes such as biological media. The model predicts static actuator displacement as a function of device parameters and applied frequency and potential for the typical case of negligible double-layer impedance and dynamic response. Model results are compared to the experimentally measured displacement of electrostatic comb-drive and parallel-plate actuators and exhibit good qualitative agreement with experimental observations. The model is applied to show that the pull-in instability of a parallel-plate actuator is frequency dependent near the critical frequency for actuation and can be eliminated for any actuator design by tuning the applied frequency. In addition, the model is applied to establish a frequency-dependent theoretical upper bound on the voltage that can be applied across passivated electrodes without electrolysis.  相似文献   

6.
Design of large deflection electrostatic actuators   总被引:5,自引:0,他引:5  
Electrostatic, comb-drive actuators have been designed for applications requiring displacements of up to 150 /spl mu/m in less than 1 ms. A nonlinear model of the actuator relates the resonant frequency and the maximum stable deflection to the actuator dimensions. A suite of experiments that were carried out on deep reactive ion etched (DRIE), single-crystal silicon, comb-drive actuators confirm the validity of the model. Four actuator design improvements were implemented. First, a folded-flexure suspension consisting of two folded beams rather than four and a U-shaped shuttle allowed the actuator area to be cut in half without degrading its performance. Second, the comb teeth were designed with linearly increasing lengths to reduce side instability by a factor of two. Third, the folded-flexure suspensions were fabricated in an initially bent configuration, improving the suspension stiffness ratio and reducing side instability by an additional factor of 30. Finally, additional actuation range was achieved using a launch and capture actuation scheme in which the actuator was allowed to swing backward after full forward deflection; the shuttle was captured and held using the backs of the comb banks as high-force, parallel-plate actuators.  相似文献   

7.

A new method is proposed in design of comb-drive actuators for specific voltage-displacement characteristics with finger gaps as the design parameters. The design method proposed by the author previously is further refined by adopting a more accurate model which considers fringe electric fields. The proposed method is applied to design comb-drive actuators with an aim to achieve linear tuning characteristics in mechanically tunable optical add-drop filters with microring resonators. To make an assessment of the accuracy of the proposed design method, three-dimensional electrostatic numerical analysis is conducted to obtain capacitances of the designed comb-drive actuators as functions of the moving finger displacement. Obtained capacitances are used to find the tuning characteristics (resonant wavelength vs. voltage) of the filter, in combination with the results from the author’s other work where a relationship between the resonant wavelength and the displacement of an index modulator was studied. It is found that by employing the actuators designed by the proposed method, the maximum deviation from linearity (MDL) can be reduced by 17.2 % points (from 25.7 % of the conventional design to 8.5 % of the new design). MDL is further reduced to 4.4 % by making a few modifications in the design.

  相似文献   

8.
We present design and experimental implementation of electrostatic comb-drive actuators in solutions of high conductivity relevant for biological cells. The actuators are operated in the frequency range 1-10 MHz in ionic and biological cell culture media, with ionic strengths up to 150 mmol/L. Typical displacement is 3.5 mum at an applied peak-to-peak signal of 5 V. Two different actuation schemes are presented and tested for performance at high frequency. A differential drive design is demonstrated to overcome the attenuation due to losses in parasitic impedances. The frequency dependence of the electrostatic force has been characterized in media of different ionic strengths. Circuit models for the electric double layer phenomena are used to understand and predict the actuator behavior. The actuator is integrated into a planar force sensing system to measure the stiffness of cells cultured on suspended structures.  相似文献   

9.
We have designed, fabricated and tested self-aligned angular vertical comb-drive (AVC) actuators by on-chip assembly using in-plane electrothermal actuators and latching mechanisms. The on-chip assembly process is carried out by engaging latching mechanism connected to the torsion bars through the off-centered thinned down silicon beams. When the latching mechanism is fully engaged, the assembled AVC actuator forms permanent initial tilt angle by the retraction force of electrothermal actuators. The AVC actuators and latching mechanisms are fabricated on a silicon-on-insulator (SOI) wafer using three photomasks and three times of deep etch steps. The maximum optical scan angle of 30.7° is achieved at 4.56 kHz under the sinusoidal driving voltage of 0–80 V applied to the AVC actuator. After the reliability test performed by operating the actuator for 1.6 × 108 cycles at its resonance, the measured optical scan angle variation and resonant frequency change were within 1.1% and 8 Hz, respectively, and the robustness of the latched mechanism was ensured.  相似文献   

10.
A novel fabrication process, named MASIS (multiple aspect ratio structural integration in single-crystal-silicon), is introduced for the implementation of single-crystal-silicon microstructures characterized by distinct aspect ratios to be fabricated in the same device layer. The MASIS process was especially designed for fabrication of transmissive MOEMS (Micro-Opto-Electro-Mechanical-Systems) modulators incorporating large field areas, and driven by long-stroke comb-drive actuators combined with folded suspensions. The comb-drive actuators were designed to achieve large amplitude of vibration and high natural frequencies, which allow large aperture areas at high operational frequency. The MASIS process consists of selective thinning of the device thickness in the shutter area, reducing payload mass, while preserving higher thickness of the suspension springs and comb-drive transducer fingers, thereby increasing the natural frequency of the device and reducing actuation voltages. A modulator was successfully fabricated, demonstrating maximum displacement of 50 μm at 1 kHz in resonance using an actuation voltage of 15 Vpp in air. The MOEMS modulator was adapted as integral part of a solid-state photodetection system to overcome the low-frequency noise.  相似文献   

11.
Deep reactive ion etching (DRIE) process is specially invented for bulk micromachining fabrication with the objective of realizing high aspect ratio microstructures. However, various tolerances, such as slanted etched profile, uneven deep beams and undercut, cannot be avoided during the fabrication process. In this paper, the origins of various fabrication tolerances together with its effects on the performances of lateral comb-drive actuator, in terms of electrostatic force, mechanical stiffness, stability and displacement, are discussed. It shows that comb finger with positive slope generates larger electrostatic force. The mechanical stiffness along lateral direction increases when the folded beam slants negatively. The displacement is 4.832 times larger if the comb finger and folded beam are tapered to +1° and −1°, respectively. The uneven deep fingers generate an abrupt force and displacement when the motion distance reaches the initial overlap length. The undercut reduces both the driving force and the mechanical stiffness of the lateral comb-drive actuator. The fabricated comb-drive actuator, with comb finger of +1° profile and 0.025 μm undercut, and folded beam of −1° slope and 0.075 μm undercut, is measured and compared with the models where both show consistent results. These analytical results can be used to compensate the fabrication tolerances at design stage and allow the actuators to provide more predictable performance.  相似文献   

12.
This paper presents the design and fabrication of a silicon micro gearing system (MGS) that utilizes electrostatic comb-drive actuators to rotate a gear ring through a ratchet mechanism. The rotational comb-drive actuator is engaged with the gear ring through a spring system and ratchet teeth at one end, reciprocally rotates around an elastic point at the other end based on the electrostatic force. Rotational motion and torque from the driving gear ring are transmitted smoothly to driven gears through involute-shaped gear teeth. Smart design of anti-gap structures helps to overcome the unavoidable gap problem occurred in deep reactive ion etching (deep-RIE) process of silicon. The MGS has been fabricated and tested successfully by using SOI (silicon-on-insulator) wafer and one mask only. The angular velocity of the gear ring is proportional to the driving frequency up to 40 Hz.  相似文献   

13.
The design of a planar micro parallel-link mechanism that allows for two translation motions and one rotation motion was discussed. The micro parallel-link mechanism uses comb-drive actuators with gear chain systems coupled to a rack-and-pinion to provide fine increments of linear motion. The micro parallel-link mechanism was designed to be fabricated using surface micromachining technology. The kinematic design and dynamic analyses of the parallel-link mechanism were discussed. A user interface for the position control of the micro actuator/mechanism was developed. Simulations were conducted to analyze the dynamic performance of the designed micro mechanism. The results show that the micro mechanism is capable of precision position control with multiple degrees of freedom.  相似文献   

14.
In this paper, a novel method has been developed to control the pull-in voltage of the fixed-fixed and cantilever MEM actuators and measure the residual stress in the fixed-fixed model using of the piezoelectric layers that have been located on the upper and lower surfaces of actuator. In the developed model, the tensile or compressive residual stresses, fringing-field and axial stress effects in the fixed-fixed end type micro-electro-mechanical systems actuator have been considered. The non-linear governing differential equations of the MEM actuators have been derived by considering the piezoelectric layers and mentioned effects. The results show that due to different applied voltage to the piezoelectric layers, the pull-in voltage can be controlled and in the fixed-fixed type the unknown value of the residual stress can be obtained.  相似文献   

15.
静电梳齿驱动结构的最大驱动位移主要受限于其侧向不稳定性,即当驱动电压接近吸合电压时,静电梳齿驱动结构的活动梳齿与固定梳齿发生吸合,导致静电梳齿驱动器失效.建立典型静电梳齿驱动结构的稳定性分析模型,研究梳齿驱动结构稳定性的影响因素,并进行理论分析、仿真分析和实验验证.结果表明:支撑梁结构的纵/横刚度比是影响静电梳齿驱动结...  相似文献   

16.
This paper describes development of a motion controller for Shape Memory Alloy (SMA) actuators using a dynamic model generated by a neuro-fuzzy inference system. Using SMA actuators, it would be possible to design miniature mechanisms for a variety of applications including miniature robots for micro manufacturing. Today SMA is used for valves, latches, and locks, which are automatically activated by heat. However it has not been used as a motion control device due to difficulty in the treatment of its highly nonlinear strain-stress hysteresis characteristic. In this paper, a dynamic model of a SMA actuator is developed using ANFIS, a neuro-fuzzy inference system provided in MATLAB environment. Using neuro-fuzzy logic, the system identification of the dynamic system is performed by observing the change of state variables (displacement and velocity) responding to a known input (input voltage to the current amplifier for the SMA actuator). Then, using the dynamic model, the estimated input voltage required to follow a desired trajectory is calculated in an open-loop manner. The actual input voltage supplied to the current amplifier is the sum of this open-loop input voltage and an input voltage calculated from an ordinary PD control scheme. This neuro-fuzzy logic-based control scheme is a very generalized scheme that can be used for a variety of SMA actuators. Experimental results are provided to demonstrate the potential for this type of controller to control the motion of the SMA actuator.  相似文献   

17.
We report microfabrication of high aspect ratio comb-drive using deep X-ray lithography at Indus-2 synchrotron radiation source. Analysis shows that the comb-drive actuator of aspect ratio 32 will produce nearly 2.5 μm displacement when 100 V DC is applied. The displacement increases as the gap between the comb finger decreases. For fabrication of comb-drive, polyimide–gold X-ray mask using UV lithography is made for the first time in India. To pattern on an 800 μm thick X-ray photoresist (PMMA) exposures are performed using our deep X-ray lithography beamline (BL-07) at Indus-2. Metallization on the selective regions of the developed X-ray photoresist with comb-drive pattern was carried out by RF sputtering. Following this the comb-drive actuator of PMMA was fabricated by one-step X-ray lithography. The comb-drive can also be used as a sensor, energy harvester, resonator and filter.  相似文献   

18.

This paper presents a design of a comb finger shape and calculation of a trapezoidal-shaped electrostatic comb-drive actuator (TECA) in order to aim a higher electrostatic force density and larger displacement in comparison with the typical rectangular-shaped electrostatic comb-drive actuator (RECA). Relation between a beam’s stiffness and a driving voltage has been examined to predict a pull-in effect occurring in TECA. Micro fabrication and characterization of TECA and RECA systems are performed by using a standard SOI-MEMS technology. Theoretical and experimental results confirm the strong points of TECA’s structure (similar to the dimensions of RECA) such as a larger number of movable comb finger arrayed at the same length and larger displacement. At driving voltages of 47.9 and 50 (V), the calculation and measurement displacement of TECA are approximately 2.2 and 1.78 times larger than that of RECA, respectively.

  相似文献   

19.
Many applications in microelectromechanical systems require physical actuation for implementation or operation. On-chip sensors would allow control of these actuators. This paper presents experimental evidence showing that a certain class of thermal actuators can be used simultaneously as an actuator and a sensor to control the actuator's force or displacement output. By measuring the current and voltage supplied to the actuator, a one-to-one correspondence is found between a given voltage and current and a measured displacement or force. This integrated sensor/actuator combination will lead to efficient on-chip control of motion for applications including microsurgery, biological cell handling, and optic positioning.  相似文献   

20.
Frequency-dependent electrostatic actuation in microfluidic MEMS   总被引:1,自引:0,他引:1  
Electrostatic actuators exhibit fast response times and are easily integrated into microsystems because they can be fabricated with standard IC micromachining processes and materials. Although electrostatic actuators have been used extensively in "dry" MEMS, they have received less attention in microfluidic systems probably because of challenges such as electrolysis, anodization, and electrode polarization. Here we demonstrate that ac drive signals can be used to prevent electrode polarization, and thus enable electrostatic actuation in many liquids, at potentials low enough to avoid electrochemistry. We measure the frequency response of an interdigitated silicon comb-drive actuator in liquids spanning a decade of dielectric permittivities and four decades of conductivity, and present a simple theory that predicts the characteristic actuation frequency. The analysis demonstrates the importance of the native oxide on silicon actuator response, and suggests that the actuation frequency can be shifted by controlling the thickness of the oxide. For native silicon devices, actuation is predicted at frequencies less than 10 MHz, in electrolytes of ionic strength up to 100 mmol/L, and thus electrostatic actuation may be feasible in many bioMEMS and other microfluidic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号