首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Catalytic activity and selectivity for hydrogenation of linoleic acid (cis-9,cis-12 18:2) were studied on Pt, Pd, Ru, and Ir supported on Al2O3. Stearic acid (18:0) and 10 different octadecenoic isomers (18:1) in the products could be separated completely by using a new capillary column coated by isocyanopropyl trisilphenylene siloxane for gas-liquid chromatography. The monoenoic acid isomers and dienoic acid isomers in the products on the various catalysts showed different distributions. The catalysts exhibited nearly equal selectivity for stearic acid formation. The 12-position double bond in linoleic acid has higher reactivity than the 9-position double bond in catalytic hydrogenation on platinum-group metal catalysts. In addition to hydrogenation products of linoleic acid, geometrical and positional dienoic acid isomers (trans-9,trans-12; trans-8,cis-12; cis-9,trans-13; trans-9,cis-13; cis-9,trans-12 18:2), due to isomerization of linoleic acid during hydrogenation, were contained in the reaction products. Ru/Al2O3 exhibited the highest activity for isomerization of linoleic acid with the noble metal catalysts. Conjugated octadecadienoic acid isomers have been observed in products of the reaction on Pt/Al2O3, Ru/Al2O3, and Ir/Al2O3. Catalytic activities of noble metals for positional and geometric isomerization of linoleic acid during hydrogenation decreased in the sequence of Ru ≥ Pt > Ir » Pd.  相似文献   

2.
Voltammetry at rotating and stationary disc electrodes is used to study the deposition of high area palladium on to nickel in an acid chloride bath. Stable deposits are formed although it is shown that on open circuit, the nickel substrate reacts with Pd(II) in the acidic chloride medium to give an immersion coating; both the immersion coating and electrodeposited metal layers are shown to contain nickel as well as palladium. The alloy is much less able than pure palladium to absorb hydrogen and shows different properties as an electrocatalyst. As a result, it may be demonstrated that the behaviour of these surfaces in methanol containing ethanoic acid as a proton source is quite different to that of Pd on C deposits. The palladium on nickel in the methanol medium is, however, a very effective and highly selective cathode for the electrocatalytic hydrogenation of nitrobenzenes to anilines.  相似文献   

3.
The catalytic behaviour of palladium supported on aromatic polyamides was studied in the liquid phase hydrogenation of benzoyl chloride at 1 atm total pressure and between 348 and 408 K. The specific activity of the catalysts as a function of palladium concentration was found to increase with metal loading. It is suggested that palladium in a metallic state is the active site for the acid chloride hydrogenation. A decrease in the reaction rate has been observed at the highest temperatures indicating that under these conditions the availability of hydrogen becomes the rate determining step. Results on the liquid phase hydrogenation of acyl- and aroyl-chlorides are reported. No strong influence of the nature of the substituents was observed on reaction parameters.  相似文献   

4.
The activity of Pd(111) for ethylene hydrogenation is measured using a high-pressure reactor incorporated into an ultrahigh vacuum chamber for temperatures between 300 and 475 K, ethylene pressures between 50 and 300 Torr and hydrogen pressures from 45 to 600 Torr. The reaction rate is found to be rapid with turnover frequencies up to 400 reactions/site/s (where rates are referenced to the atom site density on the (111) face of palladium). The measured activation energy is 35 kJ/mol. A hydrogen reaction order of 1.02 was found at a reaction temperature of 300 K and an ethylene pressure of 100 Torr, where the hydrogen reaction order was found to depend on temperature. A negative reaction order of –0.22 was found in ethylene pressure at a reaction temperature of 320 K and a hydrogen pressure of 100 Torr. The reaction rates are in good agreement with values obtained on silica-supported palladium and with other work on palladium single crystals.  相似文献   

5.
Soybean oil was hydrogenated with a carbon‐supported ruthenium catalyst (Ru/C) at 165 °C, 2 bar H2 and 500 rpm stirring speed. Reaction rates, trans isomer formation, selectivity ratios and melting behaviors of the samples were monitored. No catalytic activity was found for the application of 10 ppm of the catalyst, and significant catalytic activity appeared at >50 ppm of active catalyst. The catalyst concentration had an effect on the reaction rate of hydrogenation, but the weight‐normalized reaction rate constant (kc) was almost independent of the catalyst concentration at lower iodine values. Ru/C generated considerable amounts of trans fatty acids (TFA), including high amounts of trans 18:2, and also stearic acid, due to its very non‐selective nature. The selectivity ratios were found to be low and varied between 1.12 and 4.32 during the reactions. On the other hand, because of the low selectivity, higher slip melting points and solid fat contents at high temperatures were obtained than those for nickel and palladium catalysts. Another different characteristic of this catalyst was the formation (max 1.67%) of conjugated linoleic acid (CLA) during hydrogenation. Besides, CLA formation in the early stages of the reactions did not change very much with the lower iodine values.  相似文献   

6.
The amounts of Δ9,Δ11-conjugated linoleic acid (CLA) isomers were determined in loin-associated fat samples of bulls (n=6) and steers (n=7) by capillary gas chromatography of fatty acid methyl ester (FAME) derivatives. The main CLA-isomer—18:2 c9,t11—provided approximately 0.76 ± 0.15% and 0.86 ± 0.15% of total FAME in bulls and steers, respectively. No differences (P>0.05) were observed between the CLA isomer distribution of bulls (t9,c11, 0.026 ± 0.014%; c9,c11, 0.015 ± 0.008%; and t9,t11, 0.029 ± 0.003%) and steers (t9,c11, 0.027 ± 0.014%; c9,c11, 0.015 ± 0.005%; and t9,t11, 0.030 ± 0.007%).  相似文献   

7.
对负载型催化剂Pd/MCM—41进行了透射电镜及N2吸附表征。结果表明,金属Pd主要以纳米粒子的形式负载在分子筛表面,MCM—41的基本结构未被破坏。将Pd/MCM—41用于苯加氢反应,研究了反应温度和反应压力对催化活性的影响。结果表明,随着反应温度、反应压力的增加,苯的转化率得到有效提高。  相似文献   

8.
Analysis of conjugated linoleic acid isomers and content in french cheeses   总被引:10,自引:0,他引:10  
Conjugated linoleic acid (CLA) occurs in food as a result of microbial enzymatic reactions, free radical-type oxidation, and heat treatment. CLA is found in animal products, such as meat and dairy products, especially in cheeses. The CLA composition of 12 different French cheeses was determined by a combination of different analytical methods: reversed-phase high-performance liquid chromatography (RP-HPLC), gas chromatography-mass spectrometry (GC-MS), GC-Fourier transform infrared (GC-FTIR), and silver nitrate thin-layer chromatography (AgNO3-TLC). New isomers (Δ8,10- and Δ11,13-octadecadienoic acids with all possible cis and trans configurations) that co-eluted with previously identified isomers (Δ9c,11t-; Δ9t,11c-; Δ10c,12t-; Δ10t,12c-; Δ11c,13c-; Δ9c,11c-; Δ10c,12c-; Δ9t,11t-; Δ10t12t-octadecadienoic acids) were detected. Δ9c,11t-Octadecadienoic acid was the major CLA isomer in these cheeses. All isomers were present in each product, whatever the production process. However, CLA content in the cheeses varied from 5.3 to 15.80 mg/g of cheese fat, which depended primarily on the origin of the milk (season, geography) and somewhat on the production process.  相似文献   

9.
Catalytic hydrogenation of linoleic acid was studied on Ir/Al2O3. A detailed analysis of geometrical and positional isomers of octadecenoic acid (18:1) in the products was performed by capillary gas-liquid chromatography with a new capillary column coated with isocyanopropyl trisilphenylene siloxane (TC-70). Well-resolved peaks of 10 species of 18:1 were observed in the product. In addition to monoenoic acid isomers, four species of trans-dienoic isomers and conjugated dienoic isomers were found. From the distribution of 18:1 isomers, it was found that the double bond closer to the methyl end (Δ12) showed higher reactivity than that closer to the carboxyl end (Δ9) for hydrogenation. Because cis-8 18:1 and trans-8 18:1 were not observed but cis-10 18:1 and trans-10 18:1 were observed in the products, the double-bond Δ9 did not migrate to the carboxyl end but migrated to the methyl end. On the other hand, the Δ12 bond migrated to both methyl and carboxyl ends. From the distribution of 18:1 isomers in the reaction pathway, the hydrogenation of linoleic acid proceeds via half-hydrogenation states. Cis-18:1 isomers were produced predominantly in the initial stage of the reaction, while trans-18:1 isomers were produced during progress of the reaction. The cis/trans and positional isomerization took place by readsorption of 18:1 produced by the partial hydrogenation of linoleic acid.  相似文献   

10.
Solid solutions MxRu1–xS2 (M = Ni, Co, Fe) were prepared by sulphidation of mixtures of hydroxides at 673 K; their crystallographic properties were studied by X-ray diffraction. These new materials present interesting properties in biphenyl hydrogenation and in thiophene hydrodesulphurization. The catalytic properties are strongly dependent on the nature of the metal associated to ruthenium. Cobalt-ruthenium catalysts present a good activity for hydrodesulphurization but very low activity for hydrogenation, iron catalysts exhibit low activity for both reactions, and nickel catalysts possess remarkable properties in hydrogenation and hydrodesulphurization (twice the activity of pure ruthenium sulphide). A comparison has been established with the properties of molybdenum sulphide catalysts promoted by the same elements.  相似文献   

11.
The traditional industrial process for hydrogenation of benzoic acid to cyclohexanecarboxylic acid (CCA) has drawbacks of low‐activity and fast deactivation of the Pd/C catalyst due to the poisoning of CO arising from the decarboxylation of CCA. A novel rapidly quenched skeletal NiCrFe promoter (RQ NiCrFe) is developed for the methanation of CO to harmless CH4. Evaluations in bench‐scale autoclave and in traditional industrial equipment verified that RQ NiCrFe was very effective in promoting the activity of the Pd/C catalyst in the hydrogenation of benzoic acid. In order to solve the catalyst recycle and separation problem introduced by RQ NiCrFe, the industrial process was modified by incorporating a hydraulic cyclone and a magnetic separator to the separation unit. The modified process showed merits of lower costs of catalyst and operation, higher productivity, and better product purity than the traditional process. © 2008 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

12.
The aim of this study was to investigate whether hydroperoxides are formed in the autoxidation of conjugated linoleic acid (CLA) methyl ester both in the presence and absence of α‐tocopherol. The existence of hydroperoxide protons was confirmed by D2O exchange and by chemoselective reduction of the hydroperoxide groups into hydroxyl groups using NaBH4. These experiments were followed by nuclear magnetic resonance (NMR) spectroscopy. The 13C and 1HNMR spectra of a mixture of 9‐hydroper‐oxy‐10‐trans,12‐cis‐octadecadienoic acid methyl ester (9‐OOH) and 13‐hydroperoxy‐9‐cis, 11‐trans‐octadecadienoic acid methyl ester (13‐OOH), which are formed during the autoxidation of methyl linoleate, were studied in detail to allow the comparison between the two linoleate hydroperoxides and the CLA methyl ester hydroperoxides. The 13CNMR spectra of samples enriched with one of the two linoleate hydroperoxide isomers were assigned using 2D NMR techniques, namely Correlated Spectroscopy (COSY), gradient Heteronuclear Multiple Bond Correlation (gHMBC), and gradient Heteronuclear Single Quantum Correlation (gHSQC). The 13C and 1H NMR experiments performed in this study show that hydroperoxides are formed during the autoxidation of CLA methyl ester both in the presence and absence of α‐tocopherol and that the major isomers of CLA methyl ester hydroperoxides have a conjugated monohydroperoxydiene structure similar to that in linoleate hydroperoxides.  相似文献   

13.
New multimetallic catalytic systems for the selective hydrogenation of nitric acid to hydroxylamine were developed by investigating the promoter effect of one or more additional metals from Group 8 to 11 on Pd/C (combined with GeO2). Among various multimetallic catalytic systems investigated here, Pd + Ni/C, Pd + Ni + Fe/C, and Pd + Au + Fe/C (combined with GeO2) were found to be particularly effective systems, which provided much higher catalytic activity as well as higher selectivity than those of not only the non-doped Pd/C system but also the Pd + Fe/C system developed recently.  相似文献   

14.
Neurock  Matthew 《Topics in Catalysis》1999,9(3-4):135-152
The reaction paths for the hydrogenation of CO to methanol over Pdx (x = 1–4 and 19) cluster models were examined using first-principle density functional quantum chemical calculations. The predicted adsorption energies for the most favorable binding modes for CO, H2, HCO, H3CO, CH3OH, C, O and H on a Pd19 model Pd(111) clusters were -147, -62, -340, -51, -195, -33, -610, -349 and -251 kJ/mol, respectively. The most favorable modes for CO, CH3O, H, C and O on Pd(111) were all found to be the 3-fold fcc site. The most favorable modes for the formyl and formaldehyde surface intermediates at low coverage were the 3-fold (ζ2μ3), and the di-σ sites, respectively. At higher surface coverages, however, the atop ζ1 (C) and the π modes for the formyl and formaldehyde intermediates were more likely. The computed adsorption energies were subsequently used to compute overall reaction energies for the hydrogenation of CO to methanol. The initial hydrogenation of CO to the ζ1 (C) HCO intermediate was found to be +52 kJ/mol endothermic and has been speculated as a possible rate-limiting step. The remaining surface hydrogenation steps become increasingly more exothermic as more hydrogen was added. The elementary steps of formyl to formaldehyde, formaldehyde to methoxide and methoxide to methanol were computed to be -9, -26 and -33 kJ/mol, respectively. The overall energy for CO dissociation was found to be highly unlikely at +260 kJ/mol and a clear indication that methanation and chain growth chemistry is not very likely over Pd. The most favorable reaction coordinate for the hydrogenation of CO to the ζ1 (C) formyl intermediate was that which proceeds over a single Pd site where there is a migratory insertion of the CO into a Pd–H bond. The barrier for this path was computed to be +78 kJ/mol on the Pd19 cluster. There was a very weak dependence on cluster size. This is a likely indication that this reaction is structure insensitive. A second path which involved the coupling of H and CO over a bridge site was found to be +130 kJ/mol which is less likely, but may also occur under different conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
A chiral alkanoic acid was prepared with up to 52% excess of the (S) enantiomer by hydrogenating an,-unsaturated carboxylic acid with a cinchonidine-Pd/Al2O3 catalyst system. Favourable conditions are: high surface hydrogen concentration ( 60 bar hydrogen pressure, low catalyst concentration and apolar solvents), near ambient temperature and a cinchonidine/reactantmolar ratio of at least 0.4 mol%. It is proposed that high hydrogen solubility and the presence of 2-methyl-2-pentenoic acid reactant as dimers are advantageous for enantiodifferentiation.  相似文献   

16.
Chemical pathways responsible of the conjugation of linoleic acid during heat treatments such as refining (deodorization), frying or cooking processes have been investigated. For this purpose, methyl linoleate was submitted to oxidative and non‐oxidative thermal conditions. The resulting degradation products were mainly composed of geometrical and conjugated fatty acid isomers. Oxidative conditions were obtained using tert‐butyl hydroperoxide under inert atmosphere, and air. The obtained results from both thermal oxidative conditions were compared to non‐oxidative thermal treatment. Higher levels of conjugated linoleic acid were found when linoleate was heated under oxidative conditions. Two distinct mechanisms responsible for the formation of CLA isomers are proposed and discussed. Evidence of formation of 9,11‐C18:2 and 10,12‐C18:2 acids from 9,12‐C18:2 by a free‐radical chain reaction is provided. The first step consists in the formation of a free radical by abstraction of an active bis‐allylic hydrogen. By delocalization of the initial free radical, two allylic free radicals were stabilized and converted into the corresponding CLA isomers via the abstraction of a hydrogen radical from other linoleic acid or oxygenated species. Kinetic observations confirmed the significance of the bimolecular mechanism. Moreover, the proposed mechanism is supported by several pieces of information from the literature on peroxidation of linoleic acid. Under pure thermal conditions and/or for diluted samples, a second pathway to the formation of CLA from heat‐treated linoleic acid is proposed via an intramolecular rearrangement of the pentadienyl structure. This thermal [1,3]‐sigmatropic rearrangement results in a mixture of 9,11 and 10,12 CLA isomers. The formed cis/trans CLA isomers were readily rearranged by a [1,5]‐sigmatropic shift to yield trans‐8,cis‐10 and cis‐11,trans‐13 CLA isomers, respectively.  相似文献   

17.
As the substitution of common noble catalysts in the hydrogenation of carboxylic acid, a highly effective Cu-Ni/SiO2 catalyst was prepared by a novel stepwise ammonia evaporation method. Its performance in the gas-phase hydrogenation of acetic acid was further examined. With the introduction of Ni dopant, more stable Cuδ+ sites, which can adsorb more acetic acid, were formed due to the electron transfer from Cu to Ni. This makes more Cu0 sites available for hydrogen adsorption, which was suggested as the rate-determining step in acetic acid hydrogenation. A conversion of 99.6% was successfully achieved on this new Cu/SiO2-0.5Ni catalyst, accompanied by the ethanol selectivity of 90%. The incorporation of nickel between copper nanoparticles enhances the synergistic effect between Cu0 and Cu+. It also helps mitigate the aggregation of copper nanoparticles due to the Ostwald ripening effect induced by acetic acid and enhance the stability of copper catalyst in the conversion of carboxylic acid.  相似文献   

18.
The kinetics of the consecutive hydrogenation reactions 2-ethyl-hexenal → 2-ethyl-hexanal → 2-ethyl-hexanol were studied in the liquid phase in presence of commercial Ni, Pd and Ni-S catalysts. The Pd and Ni-S catalysts were extremely selective with respect to the formation of 2-ethyl-hexanal, while the full reaction sequence was readily catalyzed by nickel. A Langmuir-Hinshelwood model with dissociative hydrogen adsorption was found to be the most probable model, for all three catalysts. The proposal of dissociative hydrogen adsorption of the Ni-S catalyst was supported by an independent gas-phase experiment, using the H2/D2 exchange reaction as a model reaction for the hydrogen àdsorption process.  相似文献   

19.
Alumina-supported Pd catalysts with different particle surface densities have been prepared using incipient wetness impregnation of aqueous solution of a palladium nitrite complex. Buta-1,3-diene and orthoxylene hydrogenation reactions were performed both in a batch and a fixed bed reactor. Hydrogen surface mobility was studied using H2–D2 isotopic exchange. The influence of (i) the particle surface density and (ii) the surface area of the support on the catalytic properties are discussed. The turnover frequency (TOF) of the but-1,3-diene hydrogenation was highly sensitive to the surface density of Pd particles (Dsp). Moreover, for a given surface density, TOF also depend on the nature of the alumina support. For a given support, modifications of the electronic properties of palladium can explain the increase of the reaction rate with Dsp while changes in the kinetics of hydrogen surface diffusion are proposed to explain the support effect.  相似文献   

20.
对钌钯/炭催化剂催化苯甲酸加氢制备环己基甲酸进行研究,考察金属负载量、溶剂用量、反应温度和反应压力对反应的影响,并考察催化剂重复使用性能。结果表明,使用自制的钌钯/炭催化剂,催化剂中金属钌纳米粒子和钯纳米粒子负载质量分数分别为5.0%和0.5%、m(苯甲酸)∶m(环己基甲酸)=2∶1、反应温度(135~145)℃和反应压力(4~5)MPa条件下,苯甲酸转化率≥99.3%,环己基甲酸选择性≥99.0%。催化剂重复使用16次,仍具有较高活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号