首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Z-DNA, the left-handed conformer of DNA, is stabilized by the negative supercoiling generated during the movement of an RNA polymerase through a gene. Recently, we have shown that the editing enzyme ADAR1 (double-stranded RNA adenosine deaminase, type 1) has two Z-DNA binding motifs, Zalpha and Zbeta, the function of which is currently unknown. Here we show that a peptide containing the Zalpha motif binds with high affinity to Z-DNA as a dimer, that the binding site is no larger than 6 bp and that the Zalpha domain can flip a range of sequences, including d(TA)3, into the Z-DNAconformation. Evidence is also presented to show that Zalpha and Zbeta interact to form a functional DNA binding site. Studies with atomic force microscopy reveal that binding of Zalpha to supercoiled plasmids is associated with relaxation of the plasmid. Pronounced kinking of DNA is observed, and appears to be induced by binding of Zalpha. The results reported here support a model where the Z-DNA binding motifs target ADAR1 to regions of negative supercoiling in actively transcribing genes. In this situation, binding by Zalpha would be dependent upon the local level of negative superhelicity rather than the presence of any particular sequence.  相似文献   

2.
We have identified an RNA-specific adenosine deaminase (termed Tad1p/scADAT1) from Saccharomyces cerevisiae that selectively converts adenosine at position 37 of eukaryotic tRNAAla to inosine. The activity of purified recombinant Tad1p depends on the conformation of its tRNA substrate and the enzyme was found to be inactive on all other types of RNA tested. Mutant strains in which the TAD1 gene is disrupted are viable but lack Tad1p enzyme activity and their tRNAAla is not modified at position A37. Transformation of the mutant cells with the TAD1 gene restored enzyme activity. Tad1p has significant sequence similarity with the mammalian editing enzymes which act on specific precursor-mRNAs and on long double-stranded RNA. These findings suggest an evolutionary link between pre-mRNA editing and tRNA modification.  相似文献   

3.
Human leukocyte elastase (HLE) participates in tissue destruction in a number of inflammatory disorders, including rheumatoid arthritis and cystic fibrosis. Since HLE has been shown to bind to Mac-1, and ICAM-1 plays a key role during the recruitment and the activation of leukocytes at inflamed sites, we investigated the capacity of HLE to cleave ICAM-1. Flow-cytometric analyses showed a dose-dependent cleavage of ICAM-1 by HLE on different human cell lines. The cleavage was completely inhibited by alpha1-antitrypsin, a natural HLE protease inhibitor. The ability of HLE to degrade ICAM-1 was further confirmed by electrophoretic analysis using a soluble form of ICAM-1 (D1-D5). Enzymatic removal of N-linked glycosylation did not significantly modulate ICAM-1 cleavage by HLE, while removal of sialic acid residues partially reduced the sensitivity of ICAM-1 to HLE. We further showed that sputum of cystic fibrosis patients contains high levels of HLE activity capable of cleavage of cell surface ICAM-1. The cleavage induced by incubation of cells with the sputum sample was totally inhibited by alpha1-antitrypsin and the specific peptidic HLE inhibitor N-methoxysuccinyl-Ala-Ala-Pro-Val-chloromethylketone. Moreover, the cleavage of ICAM-1 was concomitant to that of CD4 at the surface of the same cell, at the same amplitude, and at all HLE concentrations. The capacity of HLE to modulate the expression of ICAM-1 on the surface of leukocytes by proteolytic cleavage brings support to the hypothesis that overproduction of HLE can cause severe immunologic lung disorders by affecting intercellular adhesion.  相似文献   

4.
This study was conducted to assess the net proteolytic activity of human non-Hodgkin's lymphomas (NHLs). We have compared the extracellular matrix (ECM)-degradative abilities of human NHLs, reactive lymphoid hyperplasias, and established lymphoid cell lines using Matrigel invasion and elastin degradation assays. The inhibition studies allowed identification of the classes of proteinases involved in ECM degradation. Our results indicate that lymphocytes and other leukocytes derived from both human NHLs and reactive lymphoid hyperplasias are capable of Matrigel penetration, but only cells derived from the high-grade human NHLs degrade elastin in vitro. Established lymphoid cell lines (both malignant and Epstein-Barr virus immortalized) do not produce MMP-9, do not penetrate the Matrigel, and do not degrade elastin. Moreover, in human NHLs, elastolytic activity is blocked by metalloproteinase inhibitors, while inhibitors of the other classes of proteolytic enzymes have only minor effects. This study identifies metalloproteinases as the most important class of proteinases involved in ECM degradation by NHLs. The previous studies suggest that, within this class, MMP-9 represents the key enzyme that plays a role in the biological aggressiveness of human NHLs.  相似文献   

5.
It is evident that human articular cartilage possesses, in addition to multiple forms of cathepsin D, multiple forms of other acid cathepsins, and, most important, a family of at least four closely related neutral protease enzyme forms, all of which degrade proteoglycan. In addition, caseinase and histonase activities are present. The search for these enzymes in human cartilage ahs been presented in some detail in order to give an idea of some of the problems faced in such research, as well as the hypotheses and hopes that flow from it and prepare the ground for further research. The actual role of proteolytic enzymes in the physiologic and pathologic condition of cartilage remains to be determined. It is hoped that these enzymes, especially the neutral protease forms, will be sufficiently purified to enable preparation of antibodies to them. This will help to clarify what controls their release from the chondrocytes and where they function in the cartilage. Meanwhile, it seems appropriate to study the neutral protease forms and their role in initiating the degradation of proteoglycan in the early stages of osteoarthritis. The chief role of cathepsin D and the new acid cathepsins is most likely in intracellular digestion. One may hypothesize a three-step sequence of the degradation of the matrix proteoglycan: (1) initial extracellular attack by the neutral matrix, (2) endocytosis of the fragments by the cells, and (3) completion of their degradation within the lysosomal digestive system of the cell. The initial degradation of the matrix proteoglycan would facilitate the entrance of other degrading enzymes from the synovium to aid in total destruction of the cartilage. While awaiting knowledge of the primary events that trigger the development of osteoarthritis, enzymatic research offers the real hope of finding a way to control the enzymatic degradation of proteoglycan occurring in the early stages of the disease. Research into the nature of these degrading enzymes will lead to the development of therapeutically suitable inhibitors.  相似文献   

6.
7.
Sperm-surface glycopeptides were obtained from intact sperm membranes after proteolytic release by different enzymatic treatments such as autoproteolysis, trypsin, papain and pronase. Glycopeptides were isolated, their properties and composition were examined, and their monosaccharide and amino acid constituents were characterized. The monosaccharides identified were fucose, mannose, galactose, N-acetylglucosamine, and N-acetylgalactosamine, which form part of more than one type of oligosaccharide units. Autoproteolytic treatment mainly provided O-glycosidic type oligosaccharides, while a mixture of O- and N-glycosidic oligosaccharides was obtained in variable proportions when treated with trypsin, papain or pronase. The highest degree of peptide cleavage was obtained with pronase. Despite the higher yields reached with trypsin, these glycopeptides contain the lowest percentage of oligosaccharide chains. Proteolytic treatment provides a simple, rapid procedure for the isolation of glycopeptides from the sperm surface.  相似文献   

8.
9.
10.
In order to compare the efficacy of immediate intravenous oxytocin administration and intracervical prostaglandin E2 gel application in premature rupture of membranes with unfavorable cervices at term, 45 term pregnant patients with premature rupture of membranes were randomized into two groups. Twenty women received immediate intravenous oxytocin after cleansing enema while the rest were treated with intracervical prostaglandin E2 gel. Means of maternal age, gestational age, Bishop score at admission and the rates of nulliparity did not show any significant differences between the two groups (p > 0.05). The mean rupture to delivery time was 12.6 +/- 4.4 hours in the oxytocin group and 16.5 +/- 4.5 hours in the prostaglandin group (p < 0.01). Mean birth weights and Apgar scores were insignificant. Cesarean section rates were 24% in the oxytocin group and 5% in the other (p < 0.05). No infectious morbidity was seen in any case. In conclusion, although delivery is delayed with the intracervical prostaglandin approach, cesarean section rate is lowered without an increase in infectious morbidity.  相似文献   

11.
Platelet activation and microthrombus formation are invariable features of xenograft rejection and the vascular injury observed when porcine organs are transplanted into primates. This pathological process could be mediated, at least in part, by aberrant interactions of von Willebrand Factor (vWF) associated with the donor vasculature with host platelets. Unlike human vWF, native porcine vWF (pvWF) interacts with human GPIb independently of shear stress or nonphysiological stimuli, eg, ristocetin. We therefore contrasted the potential of isolated human and porcine vWF-A1-domains to interact with human platelets in vitro. Both human and porcine vWF-A1-domains expressed as glycosyl phosphatidylinositol-linked FLAG fusion proteins on COS-7 cells induced GPIb-dependent aggregation and intracellular Ca++ uptake of platelets, independent of both the remainder of the vWF protein and additional modifying factors. Porcine A1-domains were more potent than human homologues, and in addition ristocetin could boost platelet aggregation only with the human A1-domain. Putative conformational changes in the porcine A1-domain could result in the heightened, ristocetin-independent interactions observed with human platelets and may be of importance for xenograft survival.  相似文献   

12.
The solution structure of the Eps15 homology (EH) domain of a human POB1 (partner of RaIBP1) has been determined by uniform 13C/15N labeling and heteronuclear multidimensional nuclear magnetic resonance spectroscopy. The POB1 EH domain consists of two EF-hand structures, and the second one binds a calcium ion. In the calcium-bound state, the orientation of the fourth alpha-helix relative to the other helices of the POB1 EH domain is slightly different from that of calbindin, and much more different from those of calmodulin and troponin C, on the basis of their atomic coordinates.  相似文献   

13.
To study the proteolytic processing of the equine arteritis virus (EAV) replicase open reading frame 1a (ORF1a) protein, specific antisera were raised in rabbits, with six synthetic peptides and a bacterial fusion protein as antigens. The processing of the EAV ORF1a product in infected cells was analyzed with Western blot (immunoblot) and immunoprecipitation techniques. Additional information was obtained from transient expression of ORF1a cDNA constructs. The 187-kDa ORF1a protein was found to be subject to at least five proteolytic cleavages. The processing scheme, which covers the entire ORF1a protein, results in cleavage products of approximately 29, 61, 22, 31, 41, and 3 kDa, which were named nonstructural proteins (nsps) 1 through 6, respectively. Pulse-chase experiments revealed that the cleavages at the nsp1/2 and nsp2/3 junctions are the most rapid processing steps. The remaining nsp3456 precursor is first cleaved at the nsp4/5 site. Final processing of the nsp34 and nsp56 intermediates is extremely slow. As predicted from previous in vitro translation experiments (E. J. Snijder, A. L. M. Wassenaar, and W. J. M. Spaan, J. Virol. 66:7040-7048, 1992), a cysteine protease domain in nsp1 was shown to be responsible for the nsp1/2 cleavage. The other processing steps are carried out by the putative EAV serine protease in nsp4 and by a third protease, which remains to be identified.  相似文献   

14.
After budding, the human immunodeficiency virus (HIV) must 'mature' into an infectious viral particle. Viral maturation requires proteolytic processing of the Gag polyprotein at the matrix-capsid junction, which liberates the capsid (CA) domain to condense from the spherical protein coat of the immature virus into the conical core of the mature virus. We propose that upon proteolysis, the amino-terminal end of the capsid refolds into a beta-hairpin/helix structure that is stabilized by formation of a salt bridge between the processed amino-terminus (Pro1) and a highly conserved aspartate residue (Asp51). The refolded amino-terminus then creates a new CA-CA interface that is essential for assembling the condensed conical core. Consistent with this model, we found that recombinant capsid proteins with as few as four matrix residues fused to their amino-termini formed spheres in vitro, but that removing these residues refolded the capsid amino-terminus and redirected protein assembly from spheres to cylinders. Moreover, point mutations throughout the putative CA-CA interface blocked capsid assembly in vitro, core assembly in vivo and viral infectivity. Disruption of the conserved amino-terminal capsid salt bridge also abolished the infectivity of Moloney murine leukemia viral particles, suggesting that lenti- and oncoviruses mature via analogous pathways.  相似文献   

15.
ADP-ribosylation factors (ARFs) are approximately 20-kDa guanine nucleotide-binding proteins recognized as critical components in intracellular vesicular transport and phospholipase D activation. Both guanine nucleotide-exchange proteins and GTPase-activating proteins (GAPs) for ARFs have been cloned recently. A zinc finger motif near the amino terminus of the ARF1 GAP was required for stimulation of GTP hydrolysis. ARD1 is an ARF family member that differs from other ARFs by the presence of a 46-kDa amino-terminal extension. We had reported that the ARF domain of ARD1 binds specifically GDP and GTP and that the amino-terminal extension acts as a GAP for the ARF domain of ARD1 but not for ARF proteins. The GAP domain of ARD1, synthesized in Escherichia coli, stimulated hydrolysis of GTP bound to the ARF domain of ARD1. Using ARD1 truncations, it appears that amino acids 101-190 are critical for GAP activity, whereas residues 190-333 are involved in physical interaction between the two domains of ARD1 and are required for GTP hydrolysis. The GAP function of the amino-terminal extension of ARD1 required two arginines, an intact zinc finger motif, and a group of residues which resembles a sequence present in Rho/Rac GAPs. Interaction between the two domains of ARD1 required two negatively charged residues (Asp427 and Glu428) located in the effector region of the ARF domain and two basic amino acids (Arg249 and Lys250) found in the amino-terminal extension. The GAP domain of ARD1 thus is similar to ARF GAPs but differs from other GAPs in its covalent association with the GTP-binding domain.  相似文献   

16.
The specific high-affinity binding of interleukin-4 (IL-4) to its receptor alpha chain is the crucial primary event during IL-4 signalling. Single crystals, suitable for high resolution diffraction studies, have been obtained from a complex between IL-4 and the ectodomain of the receptor alpha chain, also called IL-4-binding protein (IL-4BP). The orthorhombic crystals are in spacegroup P2(1)2(1)2(1) with cell constants a = 5.038 nm, b = 6.841 nm, c = 10.95 nm and diffract to a resolution of at least 0.25 nm when exposed to synchrotron radiation. The volume of the unit cell suggests the presence of a 1:1 IL-4/IL-4BP complex and HPLC analysis of the crystals confirmed that IL-4 and IL-4BP were present in equimolar amounts. An IL-4 variant comprising a total of four methionine residues was generated, labelled with selenomethionine and crystallised in complex with IL-4BP. The crystals are isomorphous to that of the complex with normal IL-4 and therefore can be used to solve the crystallographic phase problem by the method of multiple anomalous diffraction (MAD). The crystal structure of the IL-4/IL-4BP complex will help to understand how IL-4 and other helical cytokines bind and activate their cognate receptor.  相似文献   

17.
Ascending aortic disease, ranging from mild aortic root enlargement to aneurysm and/or dissection, has been identified in 10 individuals of a kindred, none of whom had classical Marfan syndrome (MFS). Single-strand conformation analysis of the entire fibrillin-1 (FBN1) cDNA of an affected family member revealed a G-to-A transition at nucleotide 3379, predicting a Gly1127Ser substitution. The glycine in this position is highly conserved in EGF-like domains of FBN1 and other proteins. This mutation was present in 9 of 10 affected family members and in 1 young unaffected member but was not found in other unaffected members, in 168 chromosomes from normal controls, and in 188 chromosomes from other individuals with MFS or related phenotypes. FBN1 intragenic marker haplotypes ruled out the possibility that the other allele played a significant role in modulating the phenotype in this family. Pulse-chase studies revealed normal fibrillin synthesis but reduced fibrillin deposition into the extracellular matrix in cultured fibroblasts from a Gly1127Ser carrier. We postulate that the Gly1127Ser FBN1 mutation is responsible for reduced matrix deposition. We suggest that mutations such as this one may disrupt EGF-like domain folding less drastically than do substitutions of cysteine or of other amino acids important for calcium-binding that cause classical MFS. The Gly1127Ser mutation, therefore, produces a mild form of autosomal dominantly inherited weakness of elastic tissue, which predisposes to ascending aortic aneurysm and dissection later in life.  相似文献   

18.
The timing and localization of DNA replication initiation in mammalian cells are heritable traits, but it is not known whether initiation requires specific DNA sequences. A site-specific recombination strategy was used to show that DNA sequences previously identified as replication initiation sites could initiate replication when transferred to new chromosomal locations. An 8-kilobase DNA sequence encompassing the origin of DNA replication in the human beta-globin locus initiated replication in the simian genome. Specific deletions within the globin origin did not initiate replication in these chromosomal sites. These data suggest that initiation of DNA replication in mammalian cells requires specific sequence information and extend the replicon hypothesis to higher eukaryotes.  相似文献   

19.
The electroneutral exchange of chloride and bicarbonate across the human erythrocyte membrane is facilitated by Band 3, a 911 amino acid glycoprotein consisting of a 43 kDa N-terminal cytosolic domain that binds the cytoskeleton, haemoglobin and glycolytic enzymes and a 52 kDa C-terminal membrane domain that mediates anion transport. Electron microscopy and three-dimensional image reconstruction of negatively stained two-dimensional crystals of the dimeric membrane domain revealed a U-shaped structure with dimensions of 60 x 110 A, and a thickness of 80 A. The structure is open on the top and at the sides, with the monomers in close contact at the base. The basal domain is 40 A thick and probably spans the lipid bilayer. The upper part of the dimer consists of two elongated protrusions measuring 25 x 80 A in projection, with a thickness of 40 A. The protrusions form the sides of a canyon, enclosing a wide space that narrows down and converges into a depression at the centre of the dimer on the top of the basal domain. This depression may represent the opening to a transport channel located at the dimer interface. Based on the available protein-chemical data, the two protrusions face the cytosolic side of the membrane and they appear to be dynamic.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) normally assembles into particles of 100 to 120 nm in diameter by budding through the plasma membrane of the cell. The Gag polyprotein is the only viral protein that is required for the formation of these particles. We have used an in vitro assembly system to examine the assembly properties of purified, recombinant HIV-1 Gag protein and of Gag missing the C-terminal p6 domain (Gag Deltap6). This system was used previously to show that the CA-NC fragment of HIV-1 Gag assembled into cylindrical particles. We now report that both HIV-1 Gag and Gag Deltap6 assemble into small, 25- to 30-nm-diameter spherical particles in vitro. The multimerization of Gag Deltap6 into units larger than dimers and the formation of spherical particles required nucleic acid. Removal of the nucleic acid with NaCl or nucleases resulted in the disruption of the multimerized complexes. We conclude from these results that (i) N-terminal extension of HIV-1 CA-NC to include the MA domain results in the formation of spherical, rather than cylindrical, particles; (ii) nucleic acid is required for the assembly and maintenance of HIV-1 Gag Deltap6 virus-like particles in vitro and possibly in vivo; (iii) a wide variety of RNAs or even short DNA oligonucleotides will support assembly; (iv) protein-protein interactions within the particle must be relatively weak; and (v) recombinant HIV-1 Gag Deltap6 and nucleic acid are not sufficient for the formation of normal-sized particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号