首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single crystals of a nickel-base superalloy were directionally solidified (DS) over a range of cooling rates to evaluate the benefits of a new high thermal gradient solidification process. Solidification experiments were conducted on cylindrical bars with a liquid-metal-enhanced cooling process. This higher gradient casting process was evaluated for the degree of structure refinement, microstructural variability, and porosity distributions. Cylindrical bars of 1.6-cm diameter were solidified at rates between 8.4 and 21.2 mm/min using a tin-based, liquid metal cooling (LMC) technique and at a rate of 3.4 mm/min with a conventional Bridgman process. The LMC process produced a refined microstructure with average primary dendrite arm spacing (PDAS) and secondary dendrite arm spacing (SDAS) values as low as 164 and 25 μm, respectively, for the bar geometry evaluated. An optimum intermediate withdrawal velocity of 12.7 mm/min produced up to a 50 and 60 pct refinement in PDAS and SDAS, respectively. Further increases in withdrawal velocity produced smaller SDAS and pore sizes, but undesirable grain boundaries and excessive secondary dendrite arm growth. Voronoi tessellation methods were used to examine the extremes of the dendrite arm spacings in comparison to the average measurements, the packing of dendrites, and the correlation of porosity size and location with the dendrite structure. A simple expression for prediction of the maximum pore size is developed.  相似文献   

2.
3.
The influence of Re and Ru on phase diagram, as-cast microstructure, and segregation behavior has been investigated using a series of 12 experimental nickel-base superalloys derived from the parent alloy CSMX-4. Up to 2 at. pct Re and 4 at. pct Ru were added at the expense of nickel, while all other alloying elements were kept constant. The Re is found to increase the liquidus temperature and to decrease the γ′-solvus. The Re additions also strongly increase the amount of eutectic and the tendency for microsegregation. The Ru, on the other hand, displays much weaker effects or even no effect at all. The effects of Re on the eutectic formation and on segregation are shown to be related. Calculations based on ThermoCalc software were carried out and compared with the experimental results. ThermoCalc is found to be able to predict the changes in the phase diagram rather well. However, the calculation of the eutectic fraction with the Scheil–Gulliver model is not satisfying, which is due to the one-dimensionality of the model.  相似文献   

4.
Some second-, third-, and fourth-generation single-crystal Ni-base superalloys (i.e., Re-containing alloys) have demonstrated the propensity for excessive primary creep at intermediate temperatures. This behavior has been attributed to the presence of secondary gamma-prime precipitates in the gamma channels as well as on the Re content of the alloys. This investigation examined creep behavior for a common first-generation alloy, PWA 1480, a common second-generation alloy, PWA 1484, as well as a modified first-generation alloy, PWA 1480, with 3 wt pct rhenium added. In addition, two different aging heat treatments were given to each alloy to either precipitate or prevent the formation of fine (nanometer-scale) secondary gamma-prime in the gamma channels. The intermediate creep properties and tensile properties of the alloys were determined for both conditions. The microstructures of these samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD), and then the role of the fine-scale microstructure and the alloy composition on the primary creep deformation was determined.  相似文献   

5.
6.
High magnetic fields are widely used to improve the microstructure and properties of materials during the solidification process. During the preparation of single-crystal turbine blades, the microstructure of the superalloy is the main factor that determines its mechanical properties. In this work, the effects of a high magnetic field on the microstructure of Ni-based single-crystal superalloys PWA1483 and CMSX-4 during directional solidification were investigated experimentally. The results showed that the magnetic field modified the primary dendrite arm spacing, γ′ phase size, and microsegregation of the superalloys. In addition, the size and volume fractions of γ/γ′ eutectic and the microporosity were decreased in a high magnetic field. Analysis of variance (ANOVA) results showed that the effect of a high magnetic field on the microstructure during directional solidification was significant (p < 0.05). Based on both experimental results and theoretical analysis, the modification of microstructure was attributed to thermoelectric magnetic convection occurring in the interdendritic regions under a high magnetic field. The present work provides a new method to optimize the microstructure of Ni-based single-crystal superalloy blades by applying a high magnetic field.  相似文献   

7.
8.
Eddy current spectroscopy is one of the promising non-destructive methods for residual stress evaluation along the depth of subsurface-treated nickel-base superalloys, but it is limited by its sensitivity to microstructure. This paper studies the influence of microstructure on the electrical conductivity of two nickel-base alloys, RR1000 and IN100. Different microstructures were attained using heat treatment cycles ranging from solution annealing to aging, with varying aging time and temperature. Eddy current conductivity was measured using conductivity probes of frequencies ranging between 1 and 5 MHz. Qualitative and quantitative characterization of the microstructure was performed using optical and scanning electron microscopes. For the heat treatment conditions between the solution annealing and the peak aging, the electrical conductivity of RR1000 increased by 6.5 pct, which is duly substantiated by the corresponding increase in hardness (12 pct) and the volume fraction of γ′ precipitates (41 pct). A similar conductivity rise of 2.6 pct for IN100 is in agreement with the increased volume fraction of γ′ precipitates (12.5 pct) despite an insignificant hardening between the heat treatment conditions. The observed results with RR1000 and IN100 highlight the sensitivity of electrical conductivity to the minor microstructure variations, especially the volume fraction of γ′ precipitates, within the materials.  相似文献   

9.
The solidification behavior of the advanced nickel-base alloys, such as Inconel® Alloy 690, is important for understanding their microstructure, properties, and eventual service behavior in nuclear power plant components. Here, an experimental and theoretical program of research is undertaken with the aim of developing a quantitative understanding of the solidification behavior under a wide range of temperature gradients and solidification growth rates. The temperature gradient and solidification rates vary spatially by several orders of magnitude during keyhole mode laser welding. Therefore, the solidification structure is experimentally characterized from microscopic examinations of the resulting fusion zones and correlated with fundamental solidification parameters to provide a widely applicable solidification map that can be employed for a broad range of solidification processes. The cell and secondary dendrite arm spacings are quantitatively correlated with cooling rates. An Alloy 690 solidification map, which illustrates the effect of temperature gradient and solidification rate on the morphology and scale of the solidification structures, is also presented.  相似文献   

10.
11.
The effect of Co on the as-cast and heat-treated microstructures was investigated in two experimental Ni-based single-crystal superalloys containing low levels of Re and Ru. The experimental results indicated that increasing the Co content from 7.9 to 15.8 wt pct decreased the volume fraction of (γ + γ′) eutectic and the solidification segregation ratio of W. High levels of Co additions were also found to decrease the solvus temperatures of the γ′ phase and (γ + γ′) eutectic as well as the solidus temperature. During the long-term thermal exposure at 1373 K (1100 °C), no TCP phases precipitated in either alloy. However, the coarsening and coalescence of γ′ precipitates in the alloy containing 15.8 wt pct Co was slower than that in the other alloy with 7.9 wt pct Co. In the current study, high levels of Co additions decreased the equilibrium volume fraction of γ′ phase, leading to a change in the partitioning ratios of TCP-forming elements Cr, Mo, Re, and W between the γ and γ′ phases. This change resulted in a lower degree of elemental supersaturation in the γ matrix and improved the phase stability of the γ/γ′ microstructure. These experimental results were then compared with those obtained from multi-component thermodynamic calculations, and good agreement was observed.  相似文献   

12.
13.
The phase stability of nickel-base superalloys has been investigated using a new in-house-designed alloy series with stepwise increased additions of Re and Ru at otherwise fixed atomic fractions of alloying elements. Results presented in this study are focused on the lesser-known topologically closed packed (TCP) formation of columnar colonies or so-called discontinuous precipitation. A detailed investigation of these colonies allowed for identifying compositional changes during the growth process and for providing a three-dimensional (3-D) illustration of the TCP phases within these colonies. The results were used to compare the colony growth process with existing growth models. Furthermore, the influence of Re and Ru on the appearance of discontinuous precipitation has been investigated by means of colony width and the effect on creep properties. Larson-Miller plots are given to illustrate the creep strength of directionally solidified samples with and without TCP colonies compared with single crystalline samples free from TCP colonies.  相似文献   

14.
The effect of subsolvus forging temperature and strain rate on the grain size developed during final supersolvus heat treatment (SSHT) of two powder-metallurgy, gamma–gamma prime superalloys, IN-100 and LSHR, was established. For this purpose, isothermal, hot compression tests were performed at temperatures ranging from 1144 K (871 °C) and 22 K (22 °C) below the respective gamma-prime solvus temperatures (T γ′) and strain rates between 0.0003 and 10 s?1. Deformed samples were then heat treated 20 K (20 °C) above the solvus for 1 h with selected additional samples exposed for shorter and longer times. For both alloys, the grain size developed during SSHT was in the range of 15 to 30 μm, except for those processing conditions consisting of pre-deformation at the highest temperature, i.e., T γ′—22 K (T γ′—22 °C), and strain rates in the range of ~0.001 to 0.1 s?1. In these latter instances, the heat-treated grain size was approx. four times as large. The observations were interpreted in terms of the mechanisms of deformation during hot working and their effect on the driving forces for grain-boundary migration which controls the evolution of the gamma-grain size.  相似文献   

15.
16.
The influence of both topologically close-packed (TCP) phase precipitation and pores on the creep life of a single-crystal superalloy has been studied at 1323?K (1050?°C)/160?MPa. Despite very reproducible primary and secondary creep stages, the creep life is scattered for this specific condition where a very steep tertiary creep stage is observed, corresponding to a highly localized failure process. Image processing was performed after failure to determine the stereological parameters characterizing pores and TCP-phase particles. It was determined that pores are major determinants of creep life under these temperature and stress conditions. It was also observed that the average surface area or the density of pores is not sufficient to explain creep life variability. A homogenization method including modified ??/???? microstructure area surrounding pores and TCP-phase particles was developed and correlated to creep life. It is shown that the greater the extent of the modified microstructure, the lower the creep life. Moreover, a better understanding of the TCP-phase role in controlling the creep life was obtained: TCP-phase particles modified the local stress field and disturbed the local ??/???? microstructure. They enhance the generation of vacancies and subsequent nucleation and growth of pores.  相似文献   

17.
18.
Barkov  L. A.  Samodurova  M. N.  Zakirov  R. A.  Latfulina  Yu. S. 《Metallurgist》2017,60(9-10):1094-1102
Metallurgist - The results are provided for research and also development of mill technology and construction with fourroll passes for rolling small section nickel-base superalloys. The design of...  相似文献   

19.
 The Ru-free and Ru-containing single crystal superalloys were cast in the directionally solidified furnace, while other alloying element contents were basically kept unchanged. The effects of Ru on the solidification characteristic and microstructures of single crystal superalloy were investigated with differential scanning calorimetry, electron probe micro analyzer, energy-dispersive X-ray spectroscope, scanning electron microscope and transmission electron microscope. The results show that the liquidus temperature of the single crystal superalloy decreases with Ru addition. The primary dendrite arm spacing and volume fraction of γ/γ′ eutectic both decrease with Ru addition. The sizes of γ′ phase of dendritic core and interdendritic region have no obvious change with Ru addition. Ru tends to segregate slightly in the dendritic core. The extent of elements segregation decreases with the Ru addition. Ru tends to partition preferentially into the γ matrix. The addition of Ru decreases the partition ratio (the ratio of the γ phases composition over the γ′ phases composition) of elements Re, W and Mo.  相似文献   

20.
The influence of melt superheating treatment on the melt properties, solidification characteristics, and rupture life of a third-generation Ni-based single-crystal superalloy was investigated to reveal the critical temperature range of melt structure evolution and its effect on rupture life. The results showed that the viscosity of superalloy decreased but the surface tension increased with increasing superheating temperature. Two characteristic temperature points where the melt viscosity and undercooling degree suddenly change were determined to be 1600 °C and 1700 °C, respectively. Similarly, the stability of the solidification interface firstly improved and then weakened with increasing superheating temperature. The dendrite arms were well refined and the segregation was reduced at 1700 °C. In addition, the rupture life obtained at 1100 °C and 137 MPa increased by approximately 30 pct, approaching the rupture life of the corresponding superalloy containing 2 pct Ru, with increasing superheating temperature from 1500 °C to 1700 °C. When the melt was further heated to 1800 °C, the rupture life decreased. The evolutions of solidification characteristics and rupture life with increasing melt superheating temperature were attributed to changes in the melt structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号