首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dissociation pK values of the representative loop diuretics furosemide, bumetanide and ethacrynic acid in 10, 30, 40, 50 and 70% (w/w) acetonitrile-water mixtures at 298.15 K were determined, according to the rules and procedures endorsed by IUPAC. The variation in pK values over the whole composition range studied can be explained by tacking into account the preferential solvation of ionizable substances in acetonitrile-water mixtures. With a view to determining the pK values of the loop diuretics studied in any of the binary solvent acetonitrile-water mixtures, correlations of pK values and different bulk properties of the solvent were examined, and the linear solvation energy relationships method, LSER, has been applied. The pK values were then correlated with the pi*, alpha and beta solvatochromic parameters of acetonitrile-water mixtures. The resulting equations allowed us to calculate pK values for the loop diuretics in any acetonitrile-water mixture up to 70% (w/w) acetonitrile.  相似文献   

2.
Chronic exposure of all-trans-retinoic acid-differentiated SH-SY5Y cells to morphine (10 mu M; 2 days) results in sensitization of adenylate cyclase as characterized by a significant increase in both PGE1 receptor-mediated as well as receptor-independent (NaF, 10 mM; forskolin, 100 mu M) stimulation of effector activity. To investigate the underlying biochemical alterations, chronic opioid regulation of each of the components comprising the stimulatory PGE1 receptor system was examined. On receptor level, chronic morphine treatment was found to reduce PGE1 receptor number (Bmax) by approximately 40%, whereas their affinity slightly increased. Binding experiments performed in the presence of GTPgammaS (100 mu M) further indicate that the decrease in PGE1 receptor density is associated with a loss of functionally G protein-coupled receptors. On post-receptor level, chronic morphine treatment substantially increased the abundance and functional activity of stimulatory G proteins, as assessed by cholera toxin-catalyzed ADP-ribosylation of GSalpha and S49 cyc- reconstitution assays. No changes were found on the level of adenylate cyclase. Evaluation of the functional interaction between PGE1 receptors and GS in situ by application of a C-terminal anti-GSalpha antibody revealed a more intense coupling efficiency between these two entities, since a significant higher amount of antibody (2.3-fold) was required in morphine dependent cell membranes to half-maximally attenuate PGE1 receptor-stimulated adenylate cyclase activity. In addition, limitation of the amount of functionally available GSalpha within the PGE1 receptor/adenylate cyclase signal transduction cascade abolished the generation of a supersensitive adenylate cyclase response during the state of naloxone (100 mu M)-precipitated withdrawal. These data demonstrate that in human neuroblastoma SH-SY5Y cells chronic morphine-induced sensitization of adenylate cyclase is associated with distinct quantitative and qualitative adaptations within the stimulatory adenylate cyclase-coupled PGE1 receptor system. Thus, alterations in the functional activity of stimulatory receptor systems are suggested to contribute to the cellular mechanisms underlying opioid dependence.  相似文献   

3.
Adenylate cyclase activity was measured in microdissected samples from lyophilized cryostat sections of rat liver by means of an improved assay. Livers were obtained from adult Sprague-Dawley rats fasted for 22 hr. Adenylate cyclase activities, basal and those elicited by various agents, were determined in dissected samples from periportal and pericentral regions of the classic liver lobule. In all samples, enzyme activity was strongly stimulated by glucagon, cholera toxin, guanosine-5'-O-(3-thiotriphosphate), sodium fluoride and forskolin. The beta-adrenergic agonist isoproterenol produced very weak, if any, enzyme stimulation. Angiotensin II did not inhibit the activity elicited by lithium chloride and GTP at high concentrations, and pertussis toxin did not enhance the GTP-stimulated activity. We observed a periportal-to-pericentral gradient for basal and agent-stimulated activities.  相似文献   

4.
The aim of this study was to characterize ion conductances and carrier mechanisms of isolated in vitro perfused rabbit colonic crypts. Crypts were isolated from rabbit colon mucosa and mounted on a pipette system which allowed controlled perfusion of the lumen. In non-stimulated conditions basolateral membrane voltage (Vbl) was -65 +/- 1 mV (n = 240). Bath Ba2+ (1 mmol/l) and verapamil (0.1 mmol/l) depolarized Vbl by 21 +/- 2 mV (n = 7) and 31 +/- 1 (n = 4), respectively. Lowering of bath Cl- concentration hyperpolarized Vbl from -69 +/- 3 to -75 +/- 3 mV (n = 9). Lowering of luminal Cl- concentration did not change Vbl. Basolateral application of loop diuretics (furosemide, piretanide, bumetanide) had no influence on Vbl in non-stimulated crypts. Forskolin (10(-6) mol/l) in the bath depolarized Vbl by 29 +/- 2 mV (n = 54) and decreased luminal membrane resistance. In one-third of the experiments a spontaneous partial repolarization of Vbl was seen in the presence of forskolin. During forskolin-induced depolarization basolateral application of loop diuretics hyperpolarized Vbl significantly and concentration dependently with a potency sequence of bumetanide > piretanide > or = furosemide. Lowering bath Cl- concentration hyperpolarized Vbl. Lowering of luminal Cl- concentration from 120 to 32 mmol/l during forskolin-induced depolarization led to a further depolarization of Vbl by 7 +/- 2 mV (n = 10). We conclude that Vbl of rabbit colonic crypt cells is dominated by a K+ conductance. Stimulation of the cells by forskolin opens a luminal Cl- conductance. Basolateral uptake of Cl- occurs via a basolateral Na+:2Cl-:K+ cotransport system.  相似文献   

5.
The effect of (+)-5-oxo-D-prolinepiperidinamide monohydrate (NS-105), a novel cognition enhancer, on adenylate cyclase activity was investigated in cultured neurons of the mouse cerebral cortex. NS-105 (10(-7) and 10(-6) M) inhibited forskolin-stimulated cyclic AMP formation, an action that was dependent on pertussis toxin-sensitive G proteins. Conversely, in pertussis toxin-pretreated neurons, NS-105 (10(-7)-10(-5) M) significantly enhanced the forskolin-stimulated cyclic AMP formation, and this action was completely reversed by cholera toxin. A metabotropic glutamate receptor agonist (1S, 3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S, 3R-ACPD) produced similar bi-directional actions on the cyclic AMP formation. Both of these inhibitory and facilitatory actions of NS-105 and 1S, 3R-ACPD were blocked by L(+)-2-amino-3-phosphopropinoic acid (L-AP3). NS-105 (10(-6) M) and 1S, 3R-ACPD (10(-4) M) significantly enhanced isoproterenol- and adenosine-stimulated cyclic AMP formation. The enhancement of such Gs-coupled receptor agonists-stimulated cyclic AMP formation was also produced by quisqualate but not by L(+)-2-amino-4-phosphonobutanoate (L-AP4). The phosphoinositides hydrolysis was enhanced by 1S, 3R-ACPD (10(-4) M) but not by NS-105 (10(-6) M), however, 1S, 3R-ACPD-induced increase in phosphoinositides turnover was attenuated by NS-105. These findings suggest that NS-105 stimulates metabotropic glutamate receptor subclasses that are coupled both negatively and positively to adenylate cyclase, but it acts as an antagonist at the receptor subclasses that are linked to phosphoinositides hydrolysis.  相似文献   

6.
Bay g 2821 is a diuretic, from a new class of chemical substances, with both the efficacy of diuretics with a high-ceiling activity, such as furosemide, bumetanide and ethacrynic acid, and the prolonged duration of action of thiazides. Pharmacological investigations showed that Bay g 2821 was more potent than furosemide in dogs but less potent in rats. Bay g 2821 did not differ from furosemide in excretion of electrolytes. Further studies showed that Bay g 2821 had an antihypertensive effect in dogs, spontaneously hpertensive rats, and in rats with artificially-induced renal hypertension. Other pharmacological studies did not reveal any other significant effects.  相似文献   

7.
Stability of azosemide after incubation in various pH solutions, human plasma, human gastric juice, and rat liver homogenates, metabolism of azosemide after incubation in 9000 g supernatant fraction of various rat tissue homogenates in the presence of NADPH, tissue distribution of azosemide and M1 after intravenous (i.v.) administration of azosemide, 20 mg kg-1, to rats, and blood partition of azosemide between plasma and blood cells from rabbit blood were studied. Azosemide seemed to be stable for up to 48 h incubation in various pH solutions ranging from two to 13 at an azosemide concentration of 10 micrograms mL-1; more than 93.4% of azosemide was recovered, and a metabolite of azosemide, M1, was not detected. However, the drug was unstable in pH1 solution: 75.8% of azosemide was recovered and 2.16 micrograms mL-1 of M1 (expressed in terms of azosemide) was formed after 48 h incubation in pH 1 solution at an azosemide concentration of 10 micrograms mL-1. Azosemide was stable in both human plasma and rat liver homogenates for up to 24 h incubation at an azosemide concentration of 1 microgram mL-1, and in human gastric juice for up to 4 h incubation at an azosemide concentration of 10 micrograms mL-1. However, all rat tissues studied had metabolic activity for azosemide in the presence of NADPH, with heart having a considerable metabolic activity: approximately 22% of azosemide disappeared and 9.32 micrograms of M1 was formed per gram of heart (expressed in terms of azosemide) after 30 min incubation of 50 micrograms of azosemide in 9000 g supernatant fraction of heart homogenates. The tissue to plasma ratios of azosemide (T/P) were greater than unity only in the liver (1.26) and kidney (1.74); however, M1 showed high affinity for all tissues studied except the brain and spleen when each tissue was collected at 30 min after i.v. administration of azosemide to rats. The equilibrium plasma to blood cell concentration ratios of azosemide were independent of azosemide blood concentrations: the values were 2.78-4.25 at azosemide blood concentrations of 1, 10, and 20 micrograms mL-1 in three rabbits. There was negligible 'blood storage effect' of azosemide, especially at low blood concentrations of azosemide, such as 1 and 10 micrograms mL-1.  相似文献   

8.
We previously demonstrated that the histamine H2 receptor can activate both adenylate cyclase (AC) and phospholipase C (PLC) signaling pathways via separate GTP-dependent mechanisms. We examined whether H2 receptor-specific peptides corresponding to the amino (N) or carboxyl terminus (C) of the second (2i) or third (3i) intracytoplasmic loops or the carboxyl terminal tail (P4iN) could effect histamine- stimulated AC and PLC activity in cell membranes prepared from HEPA cells stably transfected to express the canine H2 histamine receptor cDNA. Tiotidine binding and basal signaling were not altered by the synthetic peptides. H2P2iN, H2P2iC, H2P3iN and H2P4iN did not effect histamine stimulated AC activity although H2P3iC (10(-4) M) significantly inhibited this parameter (65.6 +/- 7.2% of maximal stimulation) (n = 6). Combination of the five peptides (H2P2iN, H2P2iC, H2P3iN, H2P3iC and H2P4iN) abolished histamine stimulated AC activity. Although all of the peptides inhibited histamine-stimulated PLC activity to a moderate degree individually, H2P3iC (10(-4) M) had the greatest effect, decreasing PLC activation to 20.8 +/- 6.3% of maximal stimulation (IC50 = 7.5 X 10(-7) M) (n = 6). H2P3iC and the peptide combination did not alter, forskolin, GTP gamma s or epinephrine-stimulated AC activity nor GTP gamma s and vasopressin-stimulated PLC. These studies demonstrate that both the second and third intracytoplasmic loops of the histamine H2 receptor are linked to separate signaling pathways in a differential manner.  相似文献   

9.
OBJECTIVE: To determine whether concurrent intravenous administration of the loop diuretic ethacrynic acid potentiates the toxicity of the aminoglycoside antibiotic gentamicin applied topically on the round window. STUDY DESIGN: The authors studied the effects on cochlear sensitivity of co-administered intracardiac ethacrynic acid (40 mg/kg) and high-dose topical gentamicin solution (100%) applied to the round window. Comparisons were made with animals receiving ethacrynic acid plus systemic gentamicin (100 mg/kg); topical gentamicin alone; systemic gentamicin alone; and intravenous ethacrynic acid alone. METHODS: Experiments were carried out on pigmented guinea pigs weighing 400 to 500 g. Changes in cochlear function were characterized by monitoring shifts in compound action potential (CAP) thresholds by use of chronic indwelling electrodes implanted at the round window, vertex, and contralateral mastoid. RESULTS: After 20 days animals receiving ethacrynic acid in combination with topical gentamicin to the round window failed to demonstrate a significant deterioration in cochlear sensitivity, whereas all animals receiving systemic gentamicin plus ethacrynic acid experienced profound increases in CAP thresholds. CONCLUSIONS: This study supports the contention that ethacrynic acid potentiates aminoglycoside ototoxicity by facilitating the entry of the antibiotics from the systemic circulation into the endolymph. In addition, this study answers important clinical concerns regarding the safety of the use of topical aminoglycoside agents in combination with loop diuretics.  相似文献   

10.
The present study was designed to determine the cellular signaling mechanisms responsible for mediating the effects of angiotensin II on proximal tubular Na+,K+-ATPase activity. Angiotensin II produced a biphasic effect on Na+,K+-ATPase activity: stimulation at 10(-13) - 10(-10) M followed by inhibition at 10(-7) - 10(-5) M of angiotensin II. The stimulatory and inhibitory effects of angiotensin II were antagonized by losartan (1nM) suggesting the involvement of AT1 receptor. Angiotensin II produced inhibition of forskolin-stimulated cAMP accumulation at 10(-13) - 10(-10) M followed by a stimulation in basal cAMP levels at 10(-7) - 10(-5) M. Pretreatment of proximal tubules with losartan (1nM) antagonized both the stimulatory and inhibitory effects of angiotensin II on cAMP accumulation. Pretreatment of the proximal tubules with pertussis toxin (PTx) abolished the stimulation of Na+,K+-ATPase activity but did not affect the inhibition of Na+,K+-ATPase activity produced by angiotensin II. Pretreatment of the tubules with cholera toxin did not alter the biphasic effect of angiotensin II on Na+,K+-ATPase activity. Mepacrine (10microM), a phospholipase A2 (PLA2) inhibitor, reduced only the inhibitory effect of angiotensin II on Na+,K+-ATPase activity. These results suggest that the activation of AT1 angiotensin II receptors stimulates Na+,K+-ATPase activity via a PTx-sensitive G protein-linked inhibition of adenylyl cyclase pathway, whereas the inhibition of Na+,K+-ATPase activity following AT1 receptor activation involves multiple signaling pathways which may include stimulation of adenylyl cyclase and PLA2.  相似文献   

11.
Several lines of evidence suggest the molecular and functional entity of muscarinic M1 receptors in mammalian heart. We have reported that acetylcholine (ACh) reduces the maximum upstroke velocity of action potential (Vmax) through activation of muscarinic M1 receptors, which is followed by a muscarinic M2 receptor-mediated increase. The present study sought to determine whether activation of beta-adrenergic receptors modulates the muscarinic M1 and M2 receptor-mediated effects on Vmax in isolated mouse right atria. Intracellular recordings of spontaneous action potential were done using the conventional glass microelectrode technique. Isoproterenol (3 nM) completely antagonized ACh (5 microM)-induced reduction in Vmax. The antagonism was accompanied by a subsequent increase in Vmax. Propranolol (0.3 microM) abolished the effects of isoproterenol on ACh-induced changes in Vmax. Isoproterenol antagonized McN-A-343 (4-(m-chlorophenyl-carbamoyloxy)-2-butynyltrimethylammonium chloride) (300 microM, a muscarinic M1 receptor agonist)-induced reduction in Vmax. Oxotremorine (0.03 microM), a muscarinic M2 receptor agonist, did not affect Vmax by itself, but significantly increased it in the presence of 3 nM isoproterenol. The effects of isoproterenol were mimicked by cholera toxin (100 nM, 1 hr), a Gs-protein activator, and forskolin (10 nM), a direct activator of adenylyl cyclase. H-89 (N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulphonamide++ +, 1 microM), a selective protein kinase (PK)-A inhibitor, abolished the antagonism by isoproterenol of ACh-induced reduction in Vmax. The present results suggest that activation of the beta-adrenergic-Gs-adenylyl cyclase system antagonizes ACh-induced reduction (muscarinic M1-mediated) and potentiates the subsequent increase (muscarinic M2 receptor-mediated) in Vmax. The beta-adrenergic antagonism of ACh-induced reduction in Vmax may involve cross-talk between PK-A and PK-C signaling pathways.  相似文献   

12.
To determine whether chronic oxytocin pretreatment inhibits adenylyl cyclase, we compared adenylyl cyclase activity in membranes prepared from cultured, immortalized rat myometrial cells that were untreated or pretreated for 24 h with oxytocin. Chronic oxytocin pretreatment (1 x 10(-5) M for 24 h) attenuated basal, guanosine triphosphate (1 x 10(-5) M)-, isoproterenol (1 x 10(-4) M)-, forskolin (1 x 10(-5) M)-, MnCl2 (20 mM)- or NaF (1 x 10(-2) M)-stimulated adenylyl cyclase activity by 27 +/- 5% to 39 +/- 11% (n = 6, p < 0.05). Oxytocin pretreatment for 2 h (n = 5) did not produce a significant effect. To understand the mechanism by which oxytocin pretreatment decreased activity of the adenylyl cyclase pathway, we compared effects of pretreatment with either oxytocin or phenylephrine on adenylyl cyclase activity and determined the effects of Gi inhibition and protein kinase C (PKC) depletion. Chronic (24 h) phenylephrine pretreatment (1 x 10(-4) M) had effects similar to those of oxytocin pretreatment (1 x 10(-5) M). PKC depletion with phorbol 12-myristate 13-acetate (1 x 10(-6) M, 41 h) prevented attenuation of adenylyl cyclase activity by oxytocin pretreatment (1 x 10(-5) M for 24 h). Inhibition of Gi by pertussis toxin pretreatment (1.25 microg/ml, 41 h) had no significant effect. These findings suggest that chronic oxytocin pretreatment desensitizes the adenylyl cyclase pathway by a cross-regulatory mechanism that involves activation of Gq and PKC.  相似文献   

13.
Arginine vasopressin (AVP) and corticosteroid hormones are involved in sodium reabsorption regulation in the renal collecting duct. Synergy between AVP and aldosterone has been well documented, although its mechanism remains unclear. Both aldosterone and glucocorticoid hormones bind to the mineralocorticoid receptor (MR), and mineralocorticoid selectivity depends on the MR-protecting enzyme 11 beta hydroxysteroid deshydrogenase (11-HSD), which metabolizes glucocorticoids into derivatives with low affinity for MR. We have investigated whether the activity of 11-HSD could be influenced by AVP and corticosteroid hormones. This study shows that in isolated rat renal collecting ducts, AVP increases 11-HSD catalytic activity. This effect is maximal at 10(-8) M AVP (a concentration clearly above the normal physiological range of AVP concentrations) and involves the V2 receptor pathway, while activation of protein kinase C or changes in intracellular calcium are ineffective. The stimulatory effect of AVP on 11-HSD is largely reduced after adrenalectomy, and is selectively restored by infusion of aldosterone, not glucocorticoids. We conclude that this synergy between AVP and aldosterone in controlling the activity of 11-HSD is likely to play a pivotal role in resetting mineralocorticoid selectivity, and hence sodium reabsorption capacities of the renal collecting duct.  相似文献   

14.
The effects of psycholeine, a plant alkaloid, were investigated on binding of radiolabelled somatostatin ([125I]N-Tyr-SRIF) and on somatostatin (SRIF)-induced inhibition of adenylate cyclase activity and growth hormone (GH) secretion by rat anterior pituitary cells. Psycholeine was shown to displace specific binding of [125I]N-Tyr-SRIF to pituitary membrane preparations, with an IC50 of 10(-5) M. At this concentration, psycholeine was also effective in significantly reducing the SRIF-induced inhibition of adenylate cyclase activity previously stimulated by growth hormone releasing factor (GRF). In parallel, it reduced the SRIF-induced inhibition of GH release stimulated by GRF in primary pituitary cell cultures in a dose-dependent manner. At a moderate concentration, the alkaloid affected neither adenylate cyclase activity nor GH release when applied in the absence of SRIF. These data suggest that psycholeine has antagonistic properties at the SRIF receptor. Quadrigemine C, a precursor of psycholeine, has a similar action.  相似文献   

15.
The effects of histamine, Nalpha-dimethylhistamine, 4,5-methylhistamine, Ntau-methylhistamine, pentagastrin, carbachol, and NaF on the adenylate cyclase activity from canine gastric mucosa were investigated in cell-free preparations. In gastric fundic mucosa, histamine (10(-4) M), Nalpha-dimethylhistamine (10(-4) M), 4,5-methylhistamine (10(-4 M), and NaF (10)-2) M) significantly (P less than 0.001) increased adenylate cyclase activity (means+/-SE) by 44.7+/-6.6, 49.4+/-6.7, 34.0+/-6.4, and 572.0+/-100%, respectively, above basal activity. The effect of histamine and Na-dimethyl histamine was dose-dependent. In contrast, other tested agents failed to stimulate the formation of cyclic AMP in gastric fundic mucosa. Metiamide (10(-4) M) blocked the stimulation of fundic mucosa adenylate cyclase by histamine and Nalpha-dimethylhistamine, without significantly altering basal and NaF-induced adenylate cyclase activity. Histamine, however, did not stimulate the adenylate cyclase activity from the gastric antral mucosa. The findings support the proposal that the canine gastric acid response to histamine may be mediated by cyclic AMP formed in response to stimulation of histamine H2-receptors.  相似文献   

16.
Adenosine and its analogues, known to stimulate adenylate cyclase activity in somatic cells via A2 receptors, can accelerate capacitation in mouse spermatozoa and thereby enhance fertilizing ability in vitro. Indirect evidence has suggested that adenosine can modulate mouse sperm adenylate cyclase, implicating this enzyme and cAMP in the observed functional responses. In the present study we provide evidence that [3H]5'-N-ethylcarboxamidoadenosine (NECA), an adenosine analogue with specificity for stimulatory A2 adenosine receptors, can bind to mouse spermatozoa. This binding can be displaced by both unlabelled NECA and 2-chloroadenosine, another A2 receptor agonist, but not by cyclopentyladenosine, an inhibitory A1 receptor agonist, suggesting that the NECA binding is specific for A2 receptors. The presence of S-(p-nitrobenzyl)-6-thioinosine, an adenosine transport inhibitor, did not affect binding, indicating an external site for interaction with sperm cells. Saturable specific binding of [3H]NECA to mouse spermatozoa incubated at 37 degrees C was observed, with a Bmax of 5.17 pmol mg-1 protein and a Kd value of 930 nmol l-1. Binding data were consistent with the presence of a single major class of receptor. In addition to demonstrable binding of [3H]NECA, both NECA and 2-chloroadenosine significantly stimulated adenylate cyclase activity in a concentration-dependent manner, with NECA being effective at a lower concentration. Furthermore, the hydrolysis-resistant GTP analogue Gpp(NH)p, alone and in the presence of either NECA or 2-chloroadenosine, also significantly stimulated enzyme activity. In somatic cells, expression of responses to adenosine usually requires GTP and G proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The hypothesis that endogenous PGE2 mediates defective thick ascending limb (TAL) Cl reabsorption (percent delivered load: FRCl%) in rats with vitamin D-induced chronic hypercalcemia (HC) was tested by measuring FRCl% in loop segments microperfused in vivo in HC and control rats treated acutely with indomethacin (Indo) or its vehicle, and obtaining the corresponding outer medullary [PGE2]. Microperfusion conditions were developed in which FRCl% was exclusively furosemide sensitive. To determine the cellular mechanism, tubules were perfused acutely with forskolin (FSK), cAMP, or the protein kinase C inhibitor staurosporine (SSP). Outer medullary [PGE2] in HC rats was 9 to 10 times greater than control and could be normalized by Indo. FRCl% was 20% lower in HC rats infused with vehicle, and Indo, FSK, and cAMP returned FRCl% to normal despite sustained HC. Indo or FSK had no effect on FRCl% in control rats and Indo did not prevent inhibition of FRCl% by luminal PGE2 (1 microM). Luminal SSP (10(-7), 10(-8) M) in HC did not return FRCl% to control values. We conclude that impaired TAL FRCl% in HC occurs at a pre-cAMP site and is due to endogenous PGE2 and not to HC.  相似文献   

18.
125I-labelled recombinant human interferon alpha 2 (rHuIFN-alpha 2) capable of high-affinity binding (Kd = 2.46 +/- 0.18 x 10(-10) M) with receptors expressed on mouse thymocytes was obtained. Prothymosin alpha (proTM-alpha) but not cholera toxin was found to compete with radiolabelled IFN-alpha 2 for binding to the same receptor (Ki = 3.68 +/- 0.21 x 10(-11) M). The synthetic peptide covering the sequence 130-137 of IFN-alpha 2 (authors' definition: alpha-peptoferon) was shown to have the capacity to displace the labelled IFN-alpha 2 from the IFN-alpha 2/receptor complex (Ki = 7.19 +/- 0.12 x 10(-11) M). It was shown that receptors of this type are localized in plasmatic membrane fraction. Using [125I]-alpha-peptoferon, specific and saturable binding was detected on human fibroblasts and the data fitted a single binding site. Scatchard analysis yielded a Kd of 9.63 +/- 0.17 x 10(-8) M. The binding was competitively inhibited by IFN-alpha 2 (the Ki value in competition assays was 1.37 +/- 0.12 x 10(-8) M), proTM-alpha(Ki = 2.2 +/- 0.2 x 10(-7) M) and cholera toxin B subunit (Ki = 5.5 +/- 0.2 x 10(-7)). The present study has demonstrated that the sequence 130-137 of HuIFN-alpha 2 is involved in the competition of HuIFN-alpha 2, proTM-alpha and cholera toxin B subunit for common receptors on human fibroblasts.  相似文献   

19.
Angiotensin II (AG II) stimulates the ouabain-insensitive, furosemide- sensitive Na+-ATPase present in the basolateral membrane of pig renal proximal tubules in a dose dependent manner. Maximum effect was obtained with 10-8 M AG II, which corresponded to an activity 134% higher than control. Half of the maximum effect was observed between 10-11 M and 10-10 M, corresponding to physiological hormone levels. Saralasin, an AG II peptide analogue receptor antagonist, abolished the phenomenon, demonstrating that AG II interacts with specific sites in pig proximal tubules. The AG II stimulatory effect was also prevented by dithiothreitol (DTT), a reducing compound, and by 10 nM losartan, a non-peptide antagonist highly specific for AT1 receptors, characterizing AG II binding to AT1 receptors. GTPgammaS, a non-hydrolysable GTP analogue, increased by 159% the enzyme activity as compared to the control values. The simultaneous addition of 10-5 M GTPgammaS and 10-8 M AG II did not have additive effects. Furthermore, the stimulatory action of AG II was completely abolished by 0.1 microM GDPbetaS, a non-hydrolysable GDP analogue. Two microgram ml-1 pertussis toxin, an inhibitor of Gi-protein, did not modulate the AG II stimulatory effect. On the other hand, the Na+-ATPase activity was enhanced 100% in the presence of cholera toxin and 85% in the presence of both AG II and cholera toxin. Taken together, these data suggest that AG II activates the Na+-ATPase activity through AT1 receptors coupled to a pertussis-insensitive and cholera-sensitive G-protein.  相似文献   

20.
1. In vivo and in vitro experiments were performed to examine inhibitory effects of digoxin on testosterone secretion and to determine possible underlying mechanisms. 2. A single intravenous injection of digoxin (1 microg kg(-1)) decreased the basal and human chorionic gonadotropin (hCG)-stimulated plasma testosterone concentrations in adult male rats. 3. Digoxin (10(-7) - 10(-4) M) decreased the basal and hCG-stimulated release of testosterone from rat testicular interstitial cells in vitro. 4. Digoxin (10(-7) - 10(-4) M) also diminished the basal and hCG-stimulated production of cyclic 3':5'-adenosine monophosphate (AMP) and attenuated the stimulatory effects of forskolin and 8-Br-cyclic AMP on testosterone production by rat testicular interstitial cells. 5. Digoxin (10(-4) M) inhibited cytochrome P450 side chain cleavage enzyme (cytochrome P450sec) activity (conversion of 25-hydroxy cholesterol to pregnenolone) in the testicular interstitial cells but did not influence the activity of other steroidogenic enzymes. 6. These results suggest that digoxin inhibits the production of testosterone in rat testicular interstitial cells, at least in part, via attenuation of the activities of adenylyl cyclase and cytochrome P450sec.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号