首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A layer-by-layer structure of enzyme multilayers composed of glucose oxidase (GOx) or lactate oxidase (LOx) and ascorbate oxidase (AOx) was prepared on the surface of a platinum electrode. The amperometric response to glucose or lactate was studied in the presence of ascorbic acid as a possible interference. An alternating and repeated deposition of avidin and the biotin-labeled enzymes resulted in the layer-by-layer structure of GOx/AOx and LOx/AOx multilayers. Optical and gravimetric measurements based on an ultraviolet-visible absorption spectroscopy and a quartz crystal microbalance revealed that the enzyme multilayers thus prepared consist of monomolecular layers of the proteins. The GOx/AOx and LOx/AOx enzyme multilayers were useful to eliminate ascorbic acid interference in the glucose and lactate biosensors, because ascorbic acid can be converted to an electrochemically inert form, dehydroascorbic acid, before being oxidized directly on the Pt electrode. Thus, the GOx/AOx or LOx/AOx multilayer-modified biosensors can be used to determine the normal blood level of glucose (5 mM) and lactate (1 mM) in the presence of a physiological level of ascorbic acid (0.1 mM). The effects of the number of the AOx layers and geometry of the enzyme layers in the multilayer on the performance characteristics of the biosensors are discussed.  相似文献   

2.
A novel approach to prepare a stable charge transfer complex (CTC) electrode for the direct oxidation of flavoproteins and the fabrication of a third generation amperometric biosensor (Koopal, C.G.J.; Feiters, M.C.; Nolte, R.J.M. Bioelectrochem. Bioenerg. 1992, 29, 159-175) system is described. Tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ), an organic CTC, is grown at the surface of a shapable electroconductive (SEC) film (a polyanion-doped polypyrrole film) in such a way that it makes a tree-shaped crystal structure standing vertically on the surface. Glucose oxidase (GOx) is adsorbed and cross-linked with glutaraldehyde to fix at the surface of the CTC structure. The space between crystals is filled with cross-linked gelatin to ensure the stability of the treelike crystal structure as well as the stability of the enzyme. Because of the close proximity and the favorable orientation of the enzyme at the CTC surface, the enzyme is directly oxidized at the crystal surface, which leads to a glucose sensor with remarkably improved performance. It works at a potential from 0.0 to 0.25 V (vs Ag/AgCl). The maximum current density at 0.25 V reaches 1.8 mA/cm2, with an extended linear range. The oxygen in the normal buffer solution has little effect on the sensor output. The current caused by interference contained in the physiological fluids is negligible. The working life as well as the shelf life of the sensor is substantially prolonged. The sensor was continuously used in a flow injection system with a continuous polarization at 0.1 V, and the samples (usually 10 mM glucose) were injected at 30 min intervals. After 100 days of continuous use, the current output dropped to 40% of the initial level. No change in the output of the sensor was observed over a year when the sensor was stored dry in a freezer. The electrochemical rate constants and the effective Michaelis constant of the system are reported.  相似文献   

3.
Previous electrokinetic remediation studies involving the geochemical characterization of heavy metals in high acid buffering soils, such as glacial till soil, revealed significant hexavalent chromium migration towards the anode. The migration of cationic contaminants, such as nickel and cadmium, towards the cathode was insignificant due to their precipitation under the high pH conditions that result when the soil has a high acid buffering capacity. Therefore the present laboratory study was undertaken to investigate the performance of different electrolyte (or purging) solutions, which were introduced to either dissolve the metal precipitates and/or form soluble metal complexes. Tests were conducted on a glacial till soil that was spiked with Cr(VI), Ni(II), and Cd(II) in concentrations of 1,000, 500, and 250 mg/kg, respectively, under the application of a 1.0 VDC/cm voltage gradient. The electrolyte solutions tested were 0.1M EDTA (ethylenediaminetetraacetic acid), 1.0M acetic acid, 1.0M citric acid, 0.1M NaCl/0.1M EDTA, and 0.05M sulfuric acid/0.5M sulfuric acid. The results showed that 46–82% of the Cr(VI) was removed from the soil, depending on the purging solution used. The highest removal of Ni(II) and Cd(II) was 48 and 26%, respectively, and this removal was achieved using 1.0M acetic acid. Although cationic contaminant removal was low, the use of 0.1M NaCl as an anode purging solution and 0.1M EDTA as a cathode purging solution resulted in significant contaminant migration towards the soil regions adjacent to the electrodes. Compared to low buffering capacity soils, such as kaolin, the removal of heavy metals from the glacial till soil was low, and this was attributed to the more complex composition of glacial till. Overall, this study showed that the selection of the purging solutions for the enhanced removal of heavy metals from soils should be primarily based upon the contaminant characteristics and the soil composition.  相似文献   

4.
Efficient phosphodiester bond cleavage activity by the hammerhead ribozyme requires divalent cations. Toward understanding this metal ion requirement, the Mn2+-binding properties of hammerhead model ribozymes have been investigated under dilute solution conditions, using electron paramagnetic resonance spectroscopy (EPR) to detect free Mn2+ in the presence of added ribozyme. Numbers and affinities of bound Mn2+ were obtained at pH 7.8 (5 mM triethanolamine) in the presence of 0, 0.1, and 1.0 M NaCl for an RNA-DNA model consisting of a 13-nucleotide DNA "substrate" hybridized to a 34-nucleotide RNA "enzyme" [Pley, H. W., Flaherty, K. M., and McKay, D. B. (1994) Nature 372, 68-74]. In 0.1 M NaCl, two classes of Mn2+ sites are found with n1 = 3.7 +/- 0.4, Kd(1) = 4 +/- 1 microM (type 1) and n2 = 5.2 +/- 0.4, Kd(2) = 460 +/- 130 microM (type 2). The high-affinity type 1 sites are confirmed for an active RNA-RNA hybrid (34-nucleotide RNA enzyme:13-nucleotide RNA substrate) by EPR measurements at low Mn2+ concentrations. Decreasing NaCl concentration results in an increased number of bound Mn2+ per hammerhead. By contrast, a binding titration in 1 M NaCl indicates that a single Mn2+ site with apparent Kd approximately 10 microM is populated in low concentrations of Mn2+, and apparent cooperative effects at higher Mn2+ concentrations result in population of a similar total number of Mn2+ sites (n1 = 8-10) as found in 0.1 M NaCl. Mn2+-dependent activity profiles are similar for the active RNA-RNA hybrid in 0.1 and 1 M NaCl. Correlation with binding affinities determined by EPR indicates that hammerhead activity in 0.1 M NaCl is only observed after all four of the high-affinity Mn2+ sites are occupied, rises with population of the type 2 sites, and is independent of Mn2+ concentrations corresponding to > 8-9 Mn2+ bound per hammerhead. Equivalent measurements in 1 M NaCl demonstrate a rise in activity with the cooperative transition observed in the Mn2+ binding curve. These measurements indicate that, over this NaCl concentration range, hammerhead ribozyme activity is influenced by population of a specific set of divalent cation sites.  相似文献   

5.
A Peroxidase (EC 1.11.1.7) of the basidiomycet Phellinus igniarius was derived from mycel and a medium containing glucose and extract of yeast by using various methods of preparation. The enzyme resists extreme conditions (pH, temperature salt concentration). Its optimum pH for activities is in the acid range. Two isoenzymes were found. The molecular weight, isoelectric point, Michaelis-Menten constant, indolacetic acid oxidase activity and spectral and analytical properties of this peroxidase were determined. It is assumed that the enzyme has an intracellular as well as an extracellular field of activity.  相似文献   

6.
A rapid procedure for the purification of the redox-regulated chloroplast fructose-1,6-bisphosphatase [EC 3.1.3.11] from spinach leaf extract to homogeneity is described. No thiol-reducing agents were present during the purification and the enzyme is > 99% in the oxidized form. A rapid procedure to reduce and activate the Fru-1,6-P2ase by dithiothreitol in the absence of thioredoxin is described. Reduction activates the enzyme up to several hundred-fold when assayed at pH 8.0 with 2 mM Mg2+. The activity of the purified oxidized enzyme is unusually sensitive to changes in Mg2+ and H+ concentration. Tenfold changes in Mg2+ or H+ concentration lead to > 100-fold increases in activity. The recoveries of fructose-1,6-bisphosphatase activity as determined by the activity of the oxidized enzyme at pH 8.0/20 mM Mg2+; pH 9.0/2 mM Mg2+; pH 8/2 mM Mg2+ plus 0.1 mM Hg(II) or of the reduced enzyme at pH 8.0/2 mM Mg2+ are similar (approximately 40%) indicating that the major proportion of these activities in a leaf extract is catalyzed by the same enzyme. Moreover, antibodies raised against the purified enzyme inhibit all of the above activities in crude leaf extracts. The kinetic properties of the purified enzyme suggest that the oxidized Mg(2+)-dependent enzyme can play no significant role in photosynthetic carbon assimilation. A survey of some kinetic properties of Fru-1,6-P2ase activity in extracts of various photosynthetic organisms reveals that all 11 species examined possess a redox- and pH/Mg(2+)-stimulated Fru-1,6-P2ase, whereas Fru-1,6-P2ase in extracts of Taxus baccata (a gymnosperm), Chlorella vulgaris (a green alga), and the cyanobacterium Nostoc muscorum were not activated by Hg(II). The heat stability that proved useful in the purification of the spinach enzyme was conserved in both angiosperms and gymnosperms. The oxidized enzyme (which normally has no thiol groups accessible to 5,5'-dithio-bis[2-nitrobenzoic acid]) but not the reduced enzyme can be stimulated many hundred-fold by addition of extraordinarily low concentrations of Hg(II) to a complete assay mixture. With the aid of EDTA as a Hg(II) buffer, half-maximal stimulation was achieved at 2 x 10(-16) M free Hg(II). Methylmercury also stimulates the enzyme many hundred-fold at very low concentrations. The concentration for half-maximal stimulation by methylmercury was determined with a cyanide buffer to be approximately 10(-16) M. This, together with the high affinity of the enzyme for Hg(II), suggests that Hg(II) stimulates the enzyme by binding to an enzyme thiol group that be comes exposed in the catalytically active enzyme, thereby stabilizing the oxidized enzyme in an active conformation. By contrast, in the absence of Fru-1,6-P2 and either Mg2+ or Ca2+, Hg(II) (even at 2 x 10(-16) M) rapidly inactivates the oxidized Fru-1,6-P2ase. This inactivation is similar to the inactivation of Fru-1,6-P2ase that occurred at high pH (> 9) and which is also prevented by Fru-1,6-P2 and either Mg2+ or Ca2+. Although the Hg(II)- and high pH-inactivated oxidized enzyme has no activity, both forms of the enzyme can be activated by reduction. The usefulness of buffers to maintain low, defined Hg(II) and organic mercurial concentrations is discussed.  相似文献   

7.
With the goal to obtain maltose phosphorylase as a tool to determine ortho-phosphate, the enzyme from Lactobacillus brevis was purified to 98% by an expeditious FPLC-aided procedure which included anion exchange chromatography, gel filtration, and hydroxyapatite chromatography. The native maltose phosphorylase had a molecular mass of 196 kDa and consisted of two 88 kDa subunits. In isoelectric focusing two isoforms with pI values of 4.2 and 4.6 were observed. Maximum enzyme activity was obtained at 36 degrees C and pH 6.5 and was independent of pyridoxal 5'-phosphate. The apparent K(m) values with maltose and phosphate as substrates were 0.9 mmol l-1 and 1.8 mmol l-1, respectively. Maltose phosphorylase could be stored in 10 mM phosphate buffer pH 6.5 at 4 degrees C with a loss of activity of only 7% up to 6 months. The stability of the enzyme at high temperatures was enhanced significantly using additives like phosphate, citrate, and imidazole. The purified maltose phosphorylase was used as key enzyme in a phosphate sensor consisting of maltose phosphorylase and glucose oxidase. A detection limit of 0.1 microM phosphate was observed and the sensor response was linear in the range between 0.5 and 10 microM.  相似文献   

8.
The application of an electrodeposited polytyramine film as an immobilisation matrix for the construction of enzyme biosensors is described. Glucose oxidase (used as a model enzyme) is covalently attached to free amine groups on the polytyramine film using the coupling reagents 1-ethyl-3(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysuccinimide. The resultant recognition interface consisted of multilayers of GOx immobilised onto the polymer surface. This method of constructing enzyme biosensors is shown to produce a highly reproducible and stable device. The biosensor showed no loss in electrode response after four months of dry storage and exhibited only minor loss in response after 20 days of repeated use. The resultant biosensor had a linear range of 0.1-28 mM glucose and a detection limit of 0.01 mM.  相似文献   

9.
A glucose sensor was recently developed by modifying an immobilized GOD (glucose oxidase) membrane and coating Nafion diffusion limiting membrane over an amperometric H2O2 MAE (microarray electrode), which was fabricated by using standard planar processing. The chip of the sensor is 2.5 mm by 15. The MAE is composed of an Ag/AgCl RE (reference electrode), a Pt CE (counter electrode) and two sets of Pt WE (working electrode), each set consists of five bands. Silicon nitride was chosen as the top insulator. Six MAEs different in both width and length of the band were examined and the MAE with the narrowest width (10 microns) of bands exhibits the best electrochemical performances. The glucose sensor based on the MAE B1-2 presents a linear range of 0.5-40 mM glucose at 37 degrees C with a 1/15 M phosphate buffer solution (pH = 7.0) as supporting electrolyte. The sensitivity, background current, response time, CV (coefficient of variation) and long-term stability of the sensor are 7.1 +/- 0.5 nA/mM, 2 +/- 0.5 nA, 30 s, 3.4% and 6 days respectively.  相似文献   

10.
The effect of sodium and potassium ions on intracellular acid production and acid excretion by glycolyzing cells of Streptococcus mutans was examined. S. mutans NCTC 10449 grown under glucose-limited and strictly anaerobic conditions in a continuous culture system was loaded with bis(carboxyethyl)-carboxyfluorescein, a pH-sensitive fluorescent dye, washed and suspended in 0.00-0.30 M NaCl/KCl solution. The dye allowed for the continuous monitoring of intracellular pH while proton excretion was measured simultaneously with a pH-stat. Sodium ions inhibited and potassium ions, at low pH, accelerated the amount of measurable acid excreted extracellularly. In the presence of both NaCl and KCl, proton excretion following the addition of glucose was slightly higher or similar to that observed in the presence of 0.15 M KCl alone. Sodium and potassium ions did not affect the proton-ATPase enzyme or the intracellular level of ATP, suggesting that these ions did not directly effect proton pumping activity itself. The inhibition of proton excretion by sodium ions was considered to have probably occurred as a result of an indirect inhibition of proton-ATPase activity by the low intracellular pH induced by sodium ions.  相似文献   

11.
A screen-printed sensor system consisting of a glucose oxidase (GOD) electrode and an amyloglucosidase/glucose oxidase (A/G) electrode was constructed to determine maltose and glucose simultaneously in a mixture. Sensor construction was optimised so that it contained 20 units of GOD/40 units of amyloglucosidase and 0.2 mM 1,1'-ferrocenedimethanol. These components were deposited onto a screen-printed carbon electrode and an outer membrane was printed from 3.5% hydroxyethyl cellulose (HEC) solution. The optimum pH was 4.8. The linear range of the system was up to 40 mM glucose or 20 mmol/L maltose with coefficients of variation (CVs) ranging from 3.5% to 5.29%. The results obtained by using the enzyme electrode system agreed well with those obtained by the Fehling titration method. When stored dry, especially at 4 degrees C, the enzyme electrodes showed good stability over four months.  相似文献   

12.
A fluorometric procedure has been developed for detection and estimation of laccase activity in fungal broth cultures. Laccase solution was pretreated with catalase for 1 h at 37 degrees C and pH 5. Homovanillic acid was then added and the reaction mixture incubated for a further hour at 37 degrees C. The fluorescence was then developed by addition of 0.1 M glycine buffer at pH 10. Laccase preparations from Pyricularia oryzae, Coriolus hirsutus and Pycnoporus cinnabarinus catalysed formation of a fluorescent product of HVA but the optimum pH values of enzyme activities varied. The culture fluids of several other fungi also catalysed development of fluorescence in solutions containing HVA. p-Hydroxyphenylacetic acid was a poor substrate for all laccases in vivo except that produced by Perennipora tephropora.  相似文献   

13.
张萍  王淑敏 《山东冶金》2000,22(3):57-58
利用斐了子型表面活性剂OP存在下,5-Br-DMPAP与铋的反应来测钢铁及合金中铋。干扰元素用DDTC-DDl4萃取法分离,HCl(1+1)反萃取后随铋主的微量铁以抗坏血酸掩蔽,反应适宜酸度为pH3左右。采用0.1M-氯醋酸和M醋酸钠(1+1)混合液为缓冲液,络合物Bi-5-Br-DMPAP最大吸收峰在575nm处。  相似文献   

14.
Production and properties of glucose isomerase from a Co2+-sensitive Streptomyces species were studied. After 4 days of shaking cultivation at 30 degrees C and 200 rpm, a maximum of 1.1 enzyme units per ml of broth was obtained. Cell-free glucose isomerase, obtained from mycelia heat-treated in the presence of 0.5 mM Co2+, showed a 3.5-fold increase in specific activity over enzyme obtained from untreated mycelia. The optimum pH and temperature for the glucose isomerase were 7 to 8 and 80 degrees C, respectively. The Michaelis constant for fructose was 0.40 M. Mg2+ was found to enhance the glucose isomerase activity, whereas the effect of Co2+ on enzyme activity depended on the manner in which the enzyme was prepared. This glucose isomerase was quite heat stable, with a half-life of 120 h at 70 degrees C.  相似文献   

15.
The catalytic activity of superoxide dismutase (SOD) and its conjugates with catalase and polymer peroxidase (p-peroxidase) obtained during covalent binding of enzymes with aldehyde dextrans was indirectly characterized by inhibition of adrenaline autoxidation in 0.1 M bicarbonate buffer, pH 10.2, and in microemulsion of 0.1 M aerosol OT (AOT) and Triton X-45 in octane containing 15% aqueous phase. The polydisulfide of gallic acid (PDGA) effectively inhibited SOD and its conjugates by a mixed mechanism. The inhibition constants Ki for SOD and its conjugate (SOD-catalase)mic in 0.1 M bicarbonate buffer, pH 10.2, were 0.1 and 0.25 microM, respectively. Autoxidation of PDGA by molecular oxygen in alkaline media (pH 10.2) influenced its inhibitory properties in buffer solution and microemulsion of AOT and Triton X-45 in octane. The radical chain mechanism of co-oxidation of adrenaline and PDGA apparently includes the anion radical O2-. as a coupling agent which propagated the chain.  相似文献   

16.
The N-acetymuramic acid L-alanine amidase from Bacillus subtilis (ATCC 6051) has been purified to homogeneity. It is a monomeric protein of molecular weight 50,000. The enzyme has a high affinity for homologous cell walls and once attached to a cell wall will hydrolyze the wall completely before initiating the hydrolysis of a new cell wall. The affinity of the enzyme for cell walls devoid of teichoic acid or for cell walls of Bacillus megaterium is much lower than that for B. subtilis cell walls. A second homogenous protein has been isolated from B. subtilis which specifically combines with the amidase in a 1:1 molar ratio and stimulates enzyme activity. This modifier protein has no intrinsic cell wall lytic activity. The binding of enzyme and modifier protein has a dissociation constant of 8.5 times 10-9 M in 0.1 M LiCl, pH 8.0, but the two proteins can be completely dissociated in 3 M LiCl at pH 8.0.  相似文献   

17.
Thymidine kinase from a transplantable colon adenocarcinoma, induced by 1,2-dimethylhydrazine and maintained in CDF rats, was purified by affinity chromatography using thymidine-3'(4-aminophenylphosphate) coupled to carboxyhexyl-Sepharose. Most of the contaminating protein passed through the column; non-specifically adsorbed protein was washed from the column by 0.1 M KC1 in 0.01 M Tris-HC1, 7.5. Thymidine kinase was eluted with 0.1 mM thymidine, 0.1 M KC1 in 0.01 M Tris-HC1, pH 7.5. The purified enzyme accounted for about 26% of the applied activity; the specific activity of the purified material (peak fraction) was 3,500 moles TMP formed per mg protein per 10 min., a 1,800-fold purification of the applied extract. The preparation is free of nucleoside phosphotransferase, but contains other protein impurities. Purification was completed in less than 1 hour, making this a useful procedure for isolation of this unstable enzyme.  相似文献   

18.
陈敏  朱子平 《冶金分析》2020,40(3):79-83
采用Ruthner法盐酸再生工艺对酸洗液进行再生处理时,需要及时测定其游离盐酸浓度。当采用通过电位滴定法测定酸洗液中游离H+浓度得到游离盐酸浓度的方法时,酸洗液中Fe2+和Fe3+的存在会干扰测定。实验利用Ca-CaY(0.1mol/L EDTA-0.150mol/L CaCl2溶液)作为掩蔽剂消除了酸洗液中大量Fe2+和少量Fe3+的干扰,实现了电位滴定法对Ruthner法盐酸再生工艺流程酸洗液中游离盐酸浓度的测定。试验结果表明,Ca-CaY掩蔽剂的加入不仅对游离酸的测定无影响,且可使pH值的突跃范围变窄;在采用电位滴定法时,设定终点判断阈值为10、终点判断范围pH=7~10、终点识别为最大,可避免pH=6附近的突跃对终点的影响从而获得准确的滴定终点。优化后确定Ca-CaY掩蔽剂用量为10mL。从Ruthner法盐酸再生工艺不同流程中各取1个酸洗液样品,按实验方法测定游离盐酸浓度,并采用间接法进行方法对比。结果表明,采用t检验验证,t为0.51~1.18,小于t(0.05,9)=2.26,说明实验方法和间接法测定结果无系统差。实验方法测定结果的相对标准偏差(RSD,n=10)在1.5%~2.6%之间。选取Ruthner法盐酸再生工艺流程中的不同酸洗液样品,按照实验方法进行测定,并加入一定量0.1mol/L盐酸标准滴定溶液进行加标回收试验,回收率在96%~103%之间。  相似文献   

19.
The concentration of glucose was determined by a combination of flow injection analysis (FIA) with amperometric enzyme sensor detection. The enzyme sensor was prepared by immobilizing glucose oxidase on an electrode coated with a polyion complex layer consisting of poly-L-lysine and poly(4-styrenesulfonate). The inner, polyion complex layer was useful for preventing electrochemical interferents (e.g., L-ascorbic acid, uric acid and acetaminophen) from reaching the electrode surface, which was effective for reducing the interferential responses upon the injections of biological and food samples. The sensor-based system could be used for the determination of glucose from 10 microM to 3 mM with the sampling rate of 180 h-1, and was stable for more than 2 months. An FIA system for determining L-glutamic acid (3 microM-0.5 mM) was also prepared by using an enzyme electrode based on a glutamate oxidase/polyion complex-bilayer as the detector.  相似文献   

20.
The gene coding for Penicillium amagasakiense glucose oxidase (GOX; beta-D-glucose; oxygen 1-oxidoreductase [EC 1.1.3.4]) has been cloned by PCR amplification with genomic DNA as template with oligonucleotide probes derived from amino acid sequences of N- and C-terminal peptide fragments of the enzyme. Recombinant Escherichia coli expression plasmids have been constructed from the heat-induced pCYTEXP1 expression vector containing the mature GOX coding sequence. When transformed into E. coli TG2, the plasmid directed the synthesis of 0.25 mg of protein in insoluble inclusion bodies per ml of E. coli culture containing more than 60% inactive GOX. Enzyme activity was reconstituted by treatment with 8 M urea and 30 mM dithiothreitol and subsequent 100-fold dilution to a final protein concentration of 0.05 to 0.1 mg ml-1 in a buffer containing reduced glutathione-oxidized glutathione, flavin adenine dinucleotide, and glycerol. Reactivation followed first-order kinetics and was optimal at 10 degrees C. The reactivated recombinant GOX was purified to homogeneity by mild acidification and anion-exchange chromatography. Up to 12 mg of active GOX could be purified from a 1-liter E. coli culture. Circular dichroism demonstrated similar conformations for recombinant and native P. amagasakiense GOXs. The purified enzyme has a specific activity of 968 U mg-1 and exhibits kinetics of glucose oxidation similar to those of, but lower pH and thermal stabilities than, native GOX from P. amagasakiense. In contrast to the native enzyme, recombinant GOX is nonglycosylated and contains a single isoform of pI 4.5. This is the first reported expression of a fully active, nonglycosylated form of a eukaryotic, glycosylated GOX in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号