首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用双轴伺服试验系统,开展花岗岩卸荷试验,借助RFPA3D-Engineering数值模拟软件和声发射监测技术对花岗岩卸荷损伤演化及破裂失稳过程进行深入研究。研究结果表明,花岗岩卸荷损伤可分为弹性变形阶段和塑性变形阶段,弹性变形阶段有小尺度裂纹产生,塑性变形阶段岩石内部裂纹不断扩展、贯通,最终形成大尺度裂纹导致岩石破裂;根据花岗岩卸荷损伤过程中声发射事件率、能量变化特性,可将声发射事件率平静期和能量的快速释放作为岩石破裂失稳前兆。花岗岩卸荷损伤演化过程中,轴向应力边界与卸荷边界相交处易出现破裂区域,并最终形成"V"形宏观破裂带,整个过程以剪切破坏模式为主。  相似文献   

2.
选取内蒙古哈不沁铁矿花岗岩为试验对象,进行了岩石单轴压缩声发射试验,研究采用声发射参量预测岩石破坏裂纹尺度增长的可行性。花岗岩的全应力-应变曲线和声发射各参量曲线分析结果表明,应变的逐渐增加加快了岩石内部聚集的弹性变形能的释放,随着弹性变形能的释放,声发射的幅度、振铃计数、能量等越来越频繁地跳跃,当进入岩石破坏阶段时,声发射参量呈现突发性增长。对比分析了在声发射参量下预测裂纹尺度与实测裂纹尺度的相关性,结果表明,径向破坏裂纹尺度是轴向位移的2倍,且预测值与实测值非常吻合,预测的裂纹尺度能够反映岩石的损伤破裂过程,也能够描述岩石应变的发展过程。  相似文献   

3.
地下工程的特殊地质环境和岩石自身的构造(存在微裂隙)决定了岩石的破坏主要以压剪破坏为主.而地下硐室的破坏如岩爆等也以剪切型破坏为主.剪切型裂纹与张性裂纹的不同使得岩石破坏时释放出较大的能量.岩石破坏过程中自身力学参数的弱化,使得应力应变关系并不能准确反映岩石变形破坏的本质.因此,以能量的耗散和释放原理,分析了岩石变形破坏过程中的能量变化,并以单轴压剪破坏为例研究了岩石破坏过程的各种能量的传递、转化关系,计算了压剪破坏后岩石释放的各种能量所占总变形能的比例,对认识硐室围岩应力重分布后积聚的可释放变形能的能量分配,硐室发生岩爆时动能大小及岩爆的量级,具有一定指导意义.  相似文献   

4.
为了更准确地认识真三轴应力条件下加卸荷速率对岩石力学特性与能量特征的影响规律,利用自主研发的“多功能真三轴流固耦合试验系统”开展了砂岩真三轴加卸荷力学特性试验,实现了最小主应力方向上的单面卸荷,模拟实际围岩应力演化过程。试验结果表明:随着卸荷速率的增大,砂岩破坏时的最大主应力、最大主应变、最小主应变和体积应变均减小、中间主应变增大,扩容起始点提前,岩样破坏模式逐渐由剪切破坏转为张拉破裂,且张性裂纹多集中于卸荷面附近。加载速率的增大,砂岩破坏时的最大主应力、最大主应变、最小主应变和体积应变增大,扩容起始点滞后,岩样破坏模式逐渐由张剪破坏转向剪切破坏,产生非贯通性裂纹。引入应变偏应力柔量分析不同加卸荷速率下砂岩变形规律,最小主应变和体积应变的偏应力敏感性与卸荷速率呈正相关,最大主应变的偏应力敏感性与加载速率呈正相关。此外,岩石在峰值应力前能量演化有明显的阶段性,峰前吸收的能量大多以可释放弹性应变能的形式存储,耗散能在峰后超过弹性应变能。耗散能比例Ud/U随着最大主应变的增加呈现出先增后降再增的趋势,峰值应力时Ud/U随着卸荷速率的增大而减小,随着加载速率的增大而增大。达到峰值应力时,岩石吸收的总能量U、弹性应变能Ue、耗散能Ud和相应的应变能增量与时间间隔的比值u均随着卸荷速率的增大而减小,随着加荷速率的增大而增大。  相似文献   

5.
为分析不同中间主应力对岩爆的影响,采用单面临空-五面受力的方式对深部花岗岩试件岩爆过程进行真三轴试验,对岩爆试件破坏特征、岩爆碎块粒径分布特点和岩石能量演化特性进行研究。结果表明,随着中间主应力的增大,首次出现颗粒弹射现象的时间点后延,而岩爆过程持续时间也相应变长;在中间主应力为10~40 MPa时出现岩爆坑,多表现为"V"型特征。岩爆坑尺寸和碎屑质量随中间主应力的增大而增大,岩石碎屑质量微粒与细粒所占百分比呈上升趋势,粗粒呈下降趋势;在岩爆试验过程中,中间主应力的增大使得岩石在峰值前试件岩爆破坏过程释放的能量增多。岩石在峰值应力处的总能量U、弹性应变能Ue、耗散能Ud与耗散能比例Ud/U随中间主应力的增大而增大。研究成果为进一步探讨深部三向应力环境下硬岩岩爆机理提供参考依据。  相似文献   

6.
变形是岩石卸荷破坏过程中的重要特征,岩石中积聚能量的耗散则是卸荷破坏的本质。利用MTS 815.3岩石力学试验系统探究大理岩在峰前卸荷条件下的变形演化规律及破坏耗能特征,主要考虑了应力路径、卸荷速率和卸荷点等因素的影响。结果表明:围压卸至0处体积应变为正时,可制备卸荷损伤破裂岩样,体积应变在卸荷过程中分为3个阶段:稳定阶段、缓慢减小阶段和显著扩容阶段;卸荷过程中,剪胀角与卸荷点呈正相关;变形模量(或广义泊松比)先缓慢减小(增加),随后快速降低(增加),卸荷点越大变形模量(或广义泊松比)转折点处对应的围压越大,卸荷路径对变形模量和广义泊松比影响较小;耗散能与卸荷点呈正相关,升轴压卸围压耗散能>恒轴压卸围压>卸轴压卸围压;不同卸荷路径下吸收能和耗散能随卸荷速率的增加差值逐渐减小,趋于稳定的吸收能和耗散能大小约0.27 MJ/m3和0.16 MJ/m3;卸荷速率控制试样破坏形态,低卸荷速率下,破坏形态以张拉剪切为主,破坏试样表面张拉裂纹和环向裂纹显著;较高卸荷速率下,表面张拉裂纹减少,破坏形式主要为伴随岩块崩落的剪切破坏;卸荷路径和卸荷...  相似文献   

7.
利用RMT-150B岩石力学试验系统进行了6种加载速率下石灰岩圆盘试样的巴西劈裂试验,分析了圆盘试样劈裂破坏过程中的变形、强度、能量和破坏特征与加载速率的关系.试验表明:整个加载劈裂过程中压应力-压应变曲线大致可分为压密、弹性和破坏3个阶段,拉应力-拉应变曲线大致可分为弹性和破坏2个阶段,峰值前拉应力-拉应变始终保持良...  相似文献   

8.
为提高采用微震监测技术预报岩爆的准确率,基于最小耗能原理,通过理论分析,花岗岩室内试验和数值分析等方法,揭示了岩爆的孕育发生机理,提出了岩爆发生的准则,建立了岩爆的孕育发生过程的本构方程,探讨了由声发射频次确定的损伤演化曲线与岩爆的损伤演化曲线之间的关系,揭示了应力、能量积累转移与微震活动空间分布规律之间的内在联系.研究结果表明:岩爆的孕育过程是以损伤耗散为主的储能过程,发生过程是以塑性耗散和弹性能释放为主的能量释放过程;同时满足裂纹扩展完成准则和极限储能准则时发生岩爆;由声发射频次确定的损伤演化曲线与岩爆的损伤演化曲线有很好的一致性;通过监测微震活动空间分布规律可揭示岩爆孕育发生过程中应力和能量分布情况,为建立岩爆预报模型提供依据.  相似文献   

9.
为了获得岩石加载过程力学特性与能量演化特征,开展了不同围压下砂岩力学特性试验。基于能量平衡理论,分析不同围压下砂岩加载过程能量转化规律,研究不同围压下砂岩特征应力、裂纹演化与能量耗散之间的关系。结果表明:砂岩三轴压缩加载过程中,试样的裂纹闭合应力、起裂应力、扩容应力及峰值应力均随围压增大呈线性增加;起裂应力和扩容应力可以较好的描述岩石稳定状态,起裂应力可以看作为岩石出现新生微破裂的初始应力,而岩石扩容应力可以认为是进入塑性屈服状态的标志。岩石加载过程中能量演化特征与应力-应变曲线和特征应力呈现较好的对应关系,压密阶段对应的原生裂纹压密过程能量转化率低;弹性变形及微裂纹稳定扩展阶段,外力做功转化的应变能大部分储存为弹性应变能,岩石内部损伤和塑性变形耗散的能量较小;扩容应力后的裂纹非稳定扩展阶段,岩石内部损伤和塑性变形耗散能量明显增大;峰值应力附近,积聚弹性应变能迅速转化为用于岩石破坏的耗散能。耗散比(Ud/U)随轴向应变的增加,呈现增大-减小-再增大的规律,耗散比趋势变化的转折点与裂纹闭合应力和扩容应力对应。耗散能随着轴向裂纹应变的累计逐渐增大,扩容应力前,耗散能随...  相似文献   

10.
结合不同应力路径下岩石真三轴试验与PFC3D数值模拟,研究高应力岩体在不同加卸载路径下的变形破坏特征并探讨其细观机制.结果 表明,真三轴压缩条件下,试件内部能量释放较缓慢,破坏形式有剪切破坏、劈裂破坏和张拉-剪切复合破坏.真三轴卸荷条件下岩石脆性特征更加明显,试件内部能量释放迅速,破坏主要发生在卸荷面附近,破坏形式有劈...  相似文献   

11.
张天军  景晨  张磊  纪翔  潘红宇 《煤炭学报》2020,(12):4087-4094
抽采钻孔孔周裂纹漏气是瓦斯抽采浓度低的原因之一,裂纹是由应变局部化带演变形成。为探究应变局部化带特征与宏观裂纹之间的关系,开展含孔试样单轴压缩破坏试验,利用数字散斑相关测量方法获取试样表面破坏图像序列及其破坏过程中的全场应变,分析不同阶段应变局部化带的分布特征,应力变化及能量演化过程。结果表明:根据受力与分布特征,应变局部化带分为主拉伸(T1),法向剪切(NS),第二主拉伸(T2)及倾斜剪切(IS),宏观主裂纹是由T2,NS和IS应变局部化带贯通所形成。形成T1和T2应变局部化带的主导因素是拉应力,NS应变局部化带是由拉应力与压应力共同作用形成,IS应变局部化带的主导因素为压应力。T2,NS和IS应变局部化带的能量积累分别是T1应变局部化带的2.2,1.8和1.6倍,加载至应变的73.6%时,T1应变局部化带率先释放能量,产生微破裂,应力峰值后,T1应变局部化带持续释放能量,T2应变局部化带的能量变化呈下降、上升和下降趋势,NS与IS应变局部化带的能量变化为上升和下降,说明试样破坏过程为局部化带之间的能量调整,能量的调整与局部化带演化相关联。结果表明了含孔试样破坏过程中孔周应变局部化带...  相似文献   

12.
地下开挖过程中高应力区域围岩易发生动力破坏,对地下工程施工人员及施工设备构成了重大威胁。采用真三轴卸荷扰动岩石测试系统对砂岩进行单面卸荷扰动试验,研究高应力岩体开挖单面卸荷围岩渐进性破坏规律,分析不同初始应力、不同扰动振幅、不同扰动频率静动组合条件下高应力岩体单面卸荷力学、破坏特征。结果表明:①单面瞬时卸荷时,轴向应变存在瞬时回弹-压缩流变现象,轴向应力越大,回弹量越小,压缩量越大;②随着第二主应力的增大,破坏强度呈现一个先升高后降低的一个过程,第二主应力为20 MPa处是破坏强度的转折点;③高应力岩体单面卸荷破坏为拉伸-劈裂-剪切复合破坏,第二主应力对卸荷破坏的最终形态呈现着关键因素,在第二主应力为10 MPa时,试样出现拉伸-劈裂-剪切裂纹,随着第二主应力的增加,试样内部剪切现象逐渐消失,出现的劈裂裂纹增加,在第二主应力为20 MPa时,试样内部基本全部处于劈裂破坏;④动静组合作用下,静载的大小与岩样的强度是决定破坏的主要因素,同等扰动条件下,当静载为破坏强度的80%时,破坏强度为148. 6 MPa,静载为破坏值的90%时,岩样的整体破坏强度为142. 4MPa,静载越大岩体破坏所需的触发能量越小破坏值越低,静载相同时,随着扰动振幅、频率的增加,岩体的破坏强度越低,对高应力岩体开挖卸荷围岩支护理论起到了重要的作用。  相似文献   

13.
单轴压缩条件下岩石声发射特性的实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用MTS岩石力学试验系统和PAC声发射信号采集系统,研究了砂岩在单轴压缩条件下应力-应变全过程的声发射特征以及加载速率对其的影响。获得了岩石轴向应力与轴向应变、横向应变、体应变之间的关系曲线,以及全应力-纵向应变过程曲线中4个阶段的声发射特征;在初始压密和弹性阶段,声发射撞击数少、能量低、振幅小、无事件数产生;在应变硬化阶段,撞击数骤增、能量高、振幅大、有大量事件数产生;在应变软化阶段撞击数骤减、能量低、振幅小、有事件产生。由于岩石每个变形阶段具有不同的声发射特征,因此,可用声发射来表征岩石的微观损伤演化和预测现场工程岩体的宏观断裂失稳过程。另外,随着加载速率的提高,岩石裂纹扩展速率会加快,损伤加大,从而产生更多的声发射;但峰值处释放能量的最大值呈递减趋势,产生强烈声发射的应变值变小。  相似文献   

14.
《煤炭技术》2017,(6):21-24
采用双向加载系统可模拟不同水平应力下圆形硐室卸荷岩爆的发生。根据实验后岩屑样品的电子显微镜照片,及岩爆过程中的声发射参数,分析其破坏过程的微观断口裂纹。结果表明:随着水平应力的增加,岩石拉破裂随着水平应力增加而减小,剪破裂随着水平应力的增加而增加。将卸荷岩爆的微观断裂现象与岩爆过程中声发射参数的裂纹分析相对比发现,结果基本一致。  相似文献   

15.
为了揭示互层状大理岩压缩过程中能量演化和破裂形态的各向异性,采用GCTS 2000岩石力学试验机,应用全应力应变分析、能量分析和CT扫描相结合的方法,对不同互层角度的大理岩试样开展了相关试验研究。结果表明:岩石的物理力学性状具有明显的各向异性,抗压强度随互层倾角变化呈U型分布,弹性模量随倾角增大逐渐减小;能量演化揭示出明显的储能与释能各向异性特征,30°倾角试样破坏所需能量最小,90°倾角试样破坏所需能量最大;提出了基于能量原理的特征起裂和扩展应力的确定方法,并证明了该方法的可靠性;岩样的宏观破裂形态表现为互层间的劈裂张拉破坏、弱面的剪切滑移破坏和贯穿基质与软夹层的张剪破坏,相应的细观CT图像表现为多条平直裂缝、单一贯穿裂缝和多条弯折裂缝。试验结果充分揭示了层状岩石破裂特征与储能释能特性的相关性,岩石的能量演化机制与其宏细观破裂形态受控于岩石的内部互层状结构,研究结果可为岩爆灾害的防控和深部资源安全开采提供必要的理论依据。  相似文献   

16.
岩石在变形破坏过程中不断与外界交换着物质和能量,是一个能量耗散的损伤演化过程,岩石破坏的实质是能量驱动下的状态失稳现象。综合介绍了在开挖瞬间,迅速增大的轴向应力随着时间增长逐渐趋于稳定和围压瞬间卸载的应力重分布情况,目前主要采用轴压升高、围压降低而轴压不变、围岩降低的室内试验方案。结果表明:岩石卸荷破坏具有明显的围压效应,总应变能、弹性应变能和耗散能与初始围压呈正相关关系;随着卸荷速率的增加,能量转化速率不断减小,岩石容易产生瞬间动态破坏;不同卸荷水平下能量演化存在明显的差异;碎屑岩块分形维数越大,扩容现象越明显,穿晶、沿晶裂纹越发育,消耗能量越多。基于现有的研究成果,提出完善试验系统、采用与工程实际相符合的应力路径、开展微细观裂纹研究、深入能量转化敏感阶段研究的发展趋势。  相似文献   

17.
对红庆河煤矿弱胶结砂岩在单轴加载条件下破坏过程中的声发射特征进行研究,根据试验过程中所采集的力学参数和声发射信号参数,得到了全过程应力-应变、应力-时间-累计计数率、应力-时间-绝对能量率以及峰值前、后的应力-应变-累计计数率、应力-时间-绝对能量率曲线。据所得应力-应变曲线将该类砂岩破坏分为2种形式:一种为传统4阶段岩石破坏形式,另一种为5阶段破坏形式。5阶段破坏模式在应变软化阶段后出现了应力不变,应变继续增大的胶结延性阶段。对比2种破坏模式的声发射特征,峰值后的声发射现象较峰值前的均有量级的变化,抗压强度相近时,弹性模量小的试样产生更多的声发射现象,但产生的绝对能量属于同一量级。累计计数率能够作为判断试样是否发生完全破坏的参数。  相似文献   

18.
利用双轴伺服控制试验系统开展开挖卸荷扰动作用下花岗岩巷道岩爆模拟实验,采用声发射系统同步采集岩爆孕育及发生过程的声发射数据,研究不同侧压影响下花岗岩巷道岩爆声发射特征。研究结果表明:双轴条件下,轴压与侧压差值越大,开挖引起的卸荷作用越明显,孔洞内出现初次颗粒弹射的时间越提前;随着侧压的升高,岩爆释放的总能量逐渐增加,声发射累积能量进入"陡增"阶段的时间则相对滞后;声发射振铃计数率能够很好地反映岩爆发生阶段孔洞内应力调整过程,随着侧压的增加,振铃计数率在加载后期的波动模式逐渐由"较低水平波动并出现一定数量跳增点"向"较高水平波动并出现一定数量突降点"转化;结合声发射RA值和AF值可知,巷道岩爆过程即产生张拉破裂又产生剪切破裂,随着侧压的增大,岩爆破坏中剪切成分所占比例逐渐增多。研究结果为岩爆的预测和防治提供了实验基础。  相似文献   

19.
黄兴  刘泉声  刘滨  刘恺德  黄诗冰 《煤炭学报》2014,39(10):1977-1986
为揭示TBM深部软弱围岩变形破坏力学特性,开展了反映深埋隧道TBM机械开挖卸荷本质——高初始围压下缓慢准静态卸荷这一卸荷特征的砂质泥岩三轴卸围压试验,研究结果表明:缓慢卸荷条件下的岩石峰前应力-应变曲线接近于常规三轴压缩峰前应力-应变曲线,卸荷屈服阶段产生损伤扩容,侧向变形加速增长,从体积压缩开始转向扩容;应力达到峰值强度后,岩石首先发生1~2级脆性跌落,随着围压继续缓慢卸荷,岩石沿一条斜率较小的近似斜直线发生伴随有多级次生微破裂的线性应变软化;岩石变形全过程由弹性变形段、峰前卸荷损伤扩容段、峰后脆性跌落段、含有多级微破裂的线性应变软化段以及残余强度阶段组成;岩石缓慢卸荷发生宏观张剪复合破坏,并伴有轴向劈裂裂纹,破裂断面为由许多劈裂裂纹相互贯通形成具有一定宽度的剪切带,剪切带内劈裂的岩片在轴向挤压力和沿破裂面的剪切力共同作用下被挤压和摩擦成许多细颗粒和岩粉。  相似文献   

20.
煤样变形破坏方式与其能量转化密不可分,为探求煤样破坏过程中能量的演化规律,对其进行了不同试验路径的加、卸荷试验。试验结果表明:不同试验路径下,煤样在峰值应力前以能量的存储及耗散为主,在峰值应力后以能量的释放及耗散为主;能量耗散使得其内部裂隙扩展,造成煤样损伤劣化,承载能力下降,能量释放使其发生破裂失稳;三轴卸围压试验中,卸荷初始围压越高,煤样存储的弹性能越多,破裂时释放的能量也越多,使得高围压下煤样破坏更为剧烈。因此,高应力煤岩体在开挖卸荷时,极易引起大量的弹性能急剧释放,导致冲击地压、岩爆等灾害发生。此外,在三轴卸围压试验中,由于围压的卸荷效应,煤样临近破裂时损伤曲线的突变程度与常规三轴压缩相比更加明显,也可以看出卸荷破坏相比加荷破坏更具突发性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号