首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
酸性 H2O2 氧化法是一种有效的难选金精矿预处理方法,可以使黄铁 矿、毒砂等载金矿物被有效溶解, 从而使金暴露出来,提高金浸出率。 研究了酸性 H2O2 体系中黄铁矿的氧 化机制,并探究了该系体中温度、矿浆浓度、 H2SO4 和 H2O2浓度等对浮选金精矿的预处理效果。 结果表明:H2O2 氧化 过程中没有固相生成物,黄铁矿中的 Fe 转 化为 Fe2+和 Fe3+ 于溶液中,Fe2+ 与 H2O2 可发生 Fenton 反应生成氧 化性极强的羟基自由基(·OH);氧化过程中有 H2SO4 生成,体系的 pH 值随着反应进行逐渐降低;黄铁矿主要被酸性 H2O2 、·OH 和 Fe3+氧化,体系中 S 最终转化为 SO4 2-或 HSO4- 。 浮选金精矿在温度为 30 ℃ 、矿浆浓度为 100 g/L、 H2SO4 初始浓度为 0. 18 mol/L 和 H2O2 初始浓度为 1. 76 mol/L 的条件下氧化预处理后,Fe 浸出率、试样失重率分别为 95. 33%和 51. 42%;浮选金精矿直接浸出时金浸出 率仅为 11. 68%,而经过酸性 H2O2预处理—浸出后,金浸出率可达 92. 69%。  相似文献   

2.
采用基于硫酸根自由基(SO4-·)的高级氧化技术,将(NH4)2S2O8作为氧化剂氧化预处理黄铁矿。考察了(NH4)2S2O8和FeSO4浓度、浸出温度、浸出时间对氧化浸出黄铁矿效果的影响。结果表明,采用热活化(NH4)2S2O8产生SO4-·预处理黄铁矿,在(NH4)2S2O8浓度0.395 mol/L、浸出温度70℃、浸出时间8 h条件下,黄铁矿浸出率可达73.71%。通过动力学方程拟合,确定该体系浸出黄铁矿可采用收缩核动力学模型描述,浸出黄铁矿过程中反应速率的决定步骤为内扩散速率,其表观活化能为50.57 kJ/mol。通过绘...  相似文献   

3.
以云南某锌厂提供的复杂挥发窑渣为研究对象,在理论分析的基础上,采用H2O2-H2SO4水溶液体系常压条件下协同浸出其中的有价金属。以In、Cu及Zn浸出率为考察指标,探讨了H2O2用量、硫酸浓度、反应温度、反应时间、液固比等因素对In、Cu、Zn浸出率的影响。结果表明,在H2O2(30%)用量0.6 mL/g、硫酸浓度3 mol/L、反应温度80 ℃、反应时间2 h、液固比6∶1条件下,In浸出率93.92%、Cu浸出率89.84%、Zn浸出率66.49%。浸出渣中贵金属Ag含量大于0.01%,富集比3.23,初步实现了窑渣中有价金属的分离与综合利用。  相似文献   

4.
转炉烟灰高效浸出铟的工艺研究   总被引:1,自引:0,他引:1  
以某公司复杂含铟转炉烟灰为原料, 采用氧化酸浸工艺浸出其中铟, 考察了硫酸酸度、液固比、浸出温度、反应时间、双氧水添加量等因素对铟浸出效果的影响。结果表明, 在初始硫酸浓度3.0 mol/L、液固比6∶1、浸出温度90 ℃、浸出时间4 h、氧化剂H2O2加入量0.8 mL/g条件下进行氧化酸浸, 铟浸出率达到94%以上, 实现了铟的高效浸出。  相似文献   

5.
用臭氧类高级氧化剂O3/H2O2对含有丁基黄药的模拟选矿废水进行了处理。考察了O3和H2O2的用量、溶液pH值、丁基黄药初始浓度、常见难免离子对废水CODCr去除效果的影响;并通过紫外-可见光谱和添加叔丁醇试验,探讨了O3/H2O2工艺去除丁基黄药的反应机理。结果表明:丁基黄药初始浓度为400 mg/L、pH=6.8的模拟废水1 000 mL,投加100 L/h 的O3和1 000 mg/L 的H2O2,反应2 h后CODCr的去除率可达60.25%;CO2-3和SO2-4有抑制废水中CODCr去除的作用,而Cu2+和Zn2+可以提高废水CODCr的去除率;O3/H2O2工艺去除废水CODCr反应遵循羟基自由基反应机制。  相似文献   

6.
用人工合成的硫化铟模拟实际硫化铟,研究了硫化铟在硫酸体系中常规浸出和以高锰酸钾、双氧水为氧化剂的氧化浸出的浸出效果和工艺条件。结果表明:在搅拌速度为800 r/min、物料粒度为75~96 μm、液固比为300∶1、温度为80 ℃、硫酸初始浓度为2.0 mol/L的条件下,常规浸出60 min,铟的浸出率为84.9%;而在相同条件下加入氧化剂KMnO4或H2O2进行氧化浸出,只需20 min就可使铟的浸出率达到94.9%或92.8%。在温度<70 ℃时,氧化剂的效应起主要作用,高锰酸钾的氧化效果比双氧水更明显;在温度>70 ℃时,温度效应占主导地位,两种氧化剂的影响差别不大。  相似文献   

7.
对广西某赤泥经铝钠回收(亚熔盐法)-还原焙烧-磁选回收铁后得到的含钪物料进行了物相组成和盐酸浸出钪试验研究。物相组成研究结果表明, 物料中主要矿物为Ca2SiO4和Ca3Al2O6, 是主要的耗酸矿物。盐酸浸出实验研究了浸出时间、温度、盐酸浓度和矿浆浓度对钪浸出率的影响, 得到最佳工艺条件为: 浸出时间4 h、浸出温度80 ℃、盐酸浓度6 mol/L和矿浆浓度7.7%, 在最佳工艺条件下进行了3组综合试验, 可获得钪平均浸出率73.27%。  相似文献   

8.
采用H2SO4-Na2S2O3·5H2O体系酸性浸出低酸富钴渣中的钴, 研究了制浆顺序、酸料比、还原剂浓度、反应温度、反应时间及液固比对钴浸出率的影响。最佳浸出工艺条件为: 向渣中直接加硫酸再补水制浆, 酸料比0.8, Na2S2O3·5H2O浓度0.12 mol/L, 反应温度85 ℃, 反应时间1.5 h, 液固比5∶1, 此时钴浸出率可达99.75%。  相似文献   

9.
为了解染料废水中有机污染物芬顿技术处理过程中黄铁矿的影响,以染料废水中常见有机污染物孔雀石绿为目标,以黄铁矿为催化剂,进行了芬顿反应过程影响因素试验和反应机理分析。结果表明,浓度为1 g/L、pH=5.2的孔雀石绿溶液中加入-360目的黄铁矿5 g/L和浓度为30%的H2O2溶液5 ml/L,在30 ℃下恒温振荡反应(120 r/min)3 h,孔雀石绿的脱色率达可达98%。反应机理分析表明,H2O2在有氧存在的弱酸性环境下,通过黄铁矿的催化,可生成活性很强的羟基自由基·OH,·OH能够通过氧化打破具有显色作用的孔雀石绿分子的共轭结构,使孔雀石绿变成无色、无毒副作用的的有机分子。  相似文献   

10.
贵州某微细浸染型金矿金品位为3.46 g/t, 在原矿性质分析的基础上, 采用硫代硫酸盐直接浸出工艺, 进行了探索试验、条件试验和综合优化试验, 确定了合理的浸出条件为: Na2S2O3·5H2O用量0.4 mol/L, CuSO4用量4 g/L, NH3·H2O用量4 mol/L, Na2SO3用量0.3 mol/L, 液固比为4∶1, pH为9.5。将原矿直接浸出与预处理后试样浸出进行对比试验, 获得金浸出率分别为72.10%和85.09%, 并对两者浸出率差异进行了分析。  相似文献   

11.
氨-硫酸铵体系中某铜矿尾矿氧化氨浸工艺研究   总被引:1,自引:0,他引:1  
以高碱性铜尾矿为研究对象, 在NH3·H2O-(NH4)2SO4体系中, 以过硫酸铵为氧化剂, 详细考察了浸出时间、反应温度、液固比、总氨浓度及NH3/NH4+比率、氨、硫酸铵和过硫酸铵浓度对铜浸出率的影响。实验结果表明, 尾矿铜的最佳浸出条件为:搅拌速度为500 r/min, 浸出温度为40 ℃, 氨浓度2.4 mol/L, 硫酸铵浓度1.0 mol/L, 过硫酸铵浓度0.2 mol/L, 液固比7∶1, 在此条件下铜的浸出率为75.9%。  相似文献   

12.
将火法炼铜所得含砷高达22%的难溶性白烟灰进行氧化焙烧处理, 然后用稀酸对铜进行浸出试验, 考察了焙烧时间和焙烧温度对铜浸出率的影响, 并对其热力学性质进行了分析。试验结果表明, 用2 mol/L的H2SO4以4∶1的液固比对白烟灰直接浸出, 铜的浸出率为45%;在焙烧温度500 ℃以上焙烧1 h, 用1 mol/L的H2SO4在相同条件下浸出, 可以使白烟灰中铜的浸出率达到98%, 同时, 可回收白烟灰中95%以上的三氧化二砷。对相关氧化反应的热力学数据进行分析计算表明, 焙烧后铜的化合物变成了易浸出的氧化物或硫酸盐, 因而浸出率提高。  相似文献   

13.
以某公司复杂含铟烟尘为原料, 分别研究了氧化酸浸和硫酸化焙烧-水浸两种浸出铟工艺。氧化酸浸工艺主要考察了初始硫酸酸度、液固比、浸出温度、反应时间、氧化剂添加量等因素对铟浸出效果的影响; 硫酸化焙烧-水浸工艺主要考察了硫酸用量、焙烧温度、焙烧时间等因素对铟浸出效果的影响。实验结果表明, 在初始硫酸浓度6.0 mol/L, 液固比6∶1, 浸出温度90 ℃, 浸出时间3 h, 氧化剂H2O2添加量为12%条件下进行氧化酸浸, 铟浸出率由常规酸浸的46.5%提高到70%; 在硫酸用量1.0 mL/g, 焙烧温度300 ℃, 焙烧时间2 h条件下进行硫酸化焙烧-水浸, 铟浸出率达到92%, 实现了铟的高效浸出。  相似文献   

14.
以酸洗废硫酸和H2O2组成的氧化体系,降解农药废水中的COD。采用Box-Behnken试验设计,以COD去除率为响应值,考察了废硫酸投加量、H2O2投加量以及反应时间的单独作用和交互影响,通过建立COD降解率数学模型预测酸洗废硫酸/H2O2氧化体系的最佳氧化参数。结果表明,在废硫酸添加量为14.17 mL/L、H2O2添加量为1.47 mL/L、反应时间为55.9 min时,COD降解率存在最大值,为47.79%,在该条件下进行7次试验对模型预测结果进行验证,7次试验的COD降解率平均值为47.52%,与预测值相差0.56%,与拟合模型的预测值基本相符,该模型能够较好地解释酸洗废硫酸/H2O2氧化工艺。此外,对7次试验出水中Pb、Cr也进行了检测,7次试验出水中均未检测出Pb、Cr元素,因此,酸洗废硫酸中存在的微量重金属元素不会对最终出水水质产生影响。表明酸洗废硫酸/H2O2氧化体系用于农药废水处理工艺是可行的。  相似文献   

15.
介绍了采用过硫酸铵((NH4)2S2O8)作氧化剂、氯化钠(NaCl)作络合剂的无氰浸银新方法。对浸银过程中(NH4)2S2O8及NaCl的浓度、浸出温度和时间、浸出环境的pH值、浸出过程中的搅拌强度等进行了条件试验。试验研究结果表明,在(NH4)2S2O8浓度0.225%,NaCl浓度25%,浸出温度45 ℃,浸出时间6 h,搅拌速度675 r/min条件下,对银粉中银的浸出率可达95%以上。  相似文献   

16.
采用异相类Fenton反应处理染料废水,并以均相Fenton反应为对照,考察废水初始pH值、催化剂投加量、H2O2投加浓度和反应时间对处理效果的影响,测定了反应过程中铁离子和剩余H2O2浓度的变化情况。结果表明,对于试验用实际染料废水,均相Fenton反应适宜的pH范围为3~8,七水合硫酸亚铁投加量为2 g/L,H2O2投加浓度为20 mmol/L,反应时间为2 h时,COD去除率与色度去除率最高能达到59.39%和97.71%;异相类Fenton反应在废水初始pH=3时处理效果最佳,黄铜矿投加量为9 g/L,H2O2投加浓度为20 mmol/L,反应时间4 h时,COD去除率与色度去除率分别为56.03%和93.79%。均相和异相类Fenton反应处理染料废水过程中生成的·OH能降解有机污染物。  相似文献   

17.
基于铜钼浮选分离试验,结合微量热法和 X 射线光电子能谱(XPS)揭示了 H2O2对黄铜矿和辉钼矿的 氧化机理和热动力学规律,旨在为铜钼硫化矿绿色、高效浮选分离提供参考。结果表明:pH=10 时,浓度为 0.01% 的 H2O2对黄铜矿与辉钼矿单矿物浮选回收率并未产生显著影响,其中黄铜矿回收率从 88.64% 下降至 83.34%,辉钼 矿回收率从 88.61% 下降至 88.50%;浓度为 1% 的 H2O2对黄铜矿与辉钼矿具有较好分离效果,黄铜矿浮选回收率显 著降低至 6.8%,而辉钼矿回收率为 78.48%;浓度为 0.01% 的 H2O2 与黄铜矿、辉钼矿的反应热分别为 2 228.9 mJ、 521.6 mJ,而 H2O2浓度增加至 1% 时,黄铜矿的反应热急剧上升至 101 328.6 mJ,反应速率常数 k 从 0.14×10-3 s-1上升 至 0.37×10-3 s-1;XPS 分析结果表明,经 H2O2处理后黄铜矿表面可能生成 FeOOH 和硫酸盐等亲水物质,导致其可浮 性降低,说明高浓度 H2O2在黄铜矿表面产生了强烈氧化作用,但对辉钼矿的氧化效果并不显著。  相似文献   

18.
以V2O5含量0.51%的某石煤钒矿石为试验原料,采用焙烧-酸浸工艺对其进行了系统的试验研究。分别考察了焙烧和浸出工艺参数对矿石中V2O5浸出率的影响。试验结果显示,在入料粒度-0.074 mm粒级含量占63.80%、焙烧温度800℃、焙烧时间2 h的焙烧条件及浸出温度70℃、H2SO4用量(H2SO4与浸出试样的质量比)12%、液固比2:1、浸出时间2 h的浸出条件下,V2O5的浸出率可达到70.81%。研究结果为该类V2O5含量未达到工业品位的石煤钒矿石的开发利用提供了参考。   相似文献   

19.
以过硫酸铵为氧化剂, 氨为络合剂, 采用常温常压氧化氨浸工艺浸出铜镉渣中有价金属锌、镉和铜。对浸出过程工艺条件进行研究, 结果表明:在氨水浓度3.4 mol/L、铵离子浓度5.0 mol/L、(NH4)2S2O8浓度30 g/L、液固比5∶1、浸出时间60 min的条件下, 铜、镉的浸出率达到99%,同时锌的浸出率达到95%。  相似文献   

20.
实验研究了锌精矿在H2SO4-HNO3 体系中浸出过程。考察了浸出温度、液 固比、四氯乙烯的加入对锌浸出的影响。通过扫描电镜分析比较了浸出前矿粒、普通浸出矿渣和加入四氯乙烯后浸出矿渣的表面形貌。结果表明, 在85 ℃, 氧气压力为0.1 MPa ,H2SO4 浓度为2.0 mol L, HNO3 浓度为0 .2 mol/L, 液 固比为10∶1 条件下, 在200 mL 浸出液中加入10 mL 四氯乙烯萃取硫磺的同时,锌的浸出率在3 h 内达到99.6%, 与普通浸出相比, 浸出时间缩短了50%。可见, 加入四氯乙烯显著地提高了浸出速率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号