首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为了快速处理布料的碰撞检测并获得真实的接触摩擦仿真效果,提出一种基于罚函数的碰撞/接触解决方案.首先,采用质点-弹簧模型进行布料的仿真模拟,在弹簧形变方向添加改进的阻尼力,以减少粒子之间的振荡来保证系统稳定性;其次,采用代数非穿透滤波器对连续碰撞检测算法进行简化求解,快速判断是否存在方程根,提高布料每帧运行的仿真效率;最后,采用库仑约束和接触约束对每个碰撞/接触对进行约束,并结合改进的罚函数法有效地响应所有的碰撞/接触对.实验结果表明,该算法在CPU仿真环境下能快速有效地处理布料的碰撞和接触摩擦,模拟出布料复杂的物理行为,适用于实时的交互应用.  相似文献   

2.
An Interactive Deformation System for Granular Material   总被引:2,自引:0,他引:2  
Computer Graphics (CG) animations of natural phenomena are currently widely used for movies and in video games. Granular materials occur widely in nature, and therefore it is necessary that CG animations represent ground surfaces composed of a granular material as well as model deformations when the granular material comes into contact with other physical rigid objects (called solid objects). In this paper, we propose a deformation algorithm for ground surfaces composed of granular material. The deformation algorithm is divided into three steps: (1) detection of the collision between a solid object and the ground surface, (2) displacement of the granular material and (3) erosion of the material at steep slopes. The proposed algorithm can handle solid objects of various shapes, including concave polyhedra by additionally using a layered data structure called the Height Span Map. Furthermore, a texture sliding technique is presented to render the motion of granular materials. In addition, our implementation of the deformation algorithm can be used at interactive frame rates.  相似文献   

3.
Contact and Deformation Modeling for Interactive Environments   总被引:2,自引:0,他引:2  
Contact and deformation modeling for interactive environments has seen many applications, from surgical simulation and training, to virtual prototyping, to teleoperation, etc., where both visual feedback and haptic feedback are needed. High-quality feedback demands a high level of physical realism as well as a high update rate in rendering, which are often conflicting requirements. In this paper, we present a unique approach to modeling force and deformation between a rigid body and an elastic object under complex contacts, which achieves a good compromise of reasonable physical realism and real-time update rate (at least 1 kHz). We simulate contact forces based on a nonlinear physical model. We further introduce a novel approximation of material deformation suitable for interactive environments based on applying Bernoulli-Euler bending beam theory to the simulation of elastic shape deformation. Our approach is able to simulate the contact forces exerted upon the rigid body (that can be virtually held by a user via a haptic device) not only when it forms one or more than one contact with the elastic object, but also when it moves compliantly on the surface of the elastic object, taking friction into account. Our approach is also able to simulate the global and local shape deformation of the elastic object due to contact. All the simulations can be performed in a combined update rate of over 1 kHz, which we demonstrate in several examples.  相似文献   

4.
A numerical investigation of central binary collision of droplets   总被引:2,自引:0,他引:2  
The paper presents a numerical investigation of the central collision of two equal-sized droplets in a gaseous phase. The investigation is based on the numerical solution of the Navier-Stokes equations in their axi-symmetric form using the finite volume technique. The Volume of Fluid Method (V.O.F) is employed for tracking the liquid-gas interface. An adaptive local grid refinement technique developed recently is used in order to increase the resolution around the interface. By using two V.O.F indicator functions the identity of each droplet is preserved and can be detected after droplet contact until coalescence. The results are compared with available experimental data and provide a very detailed picture of the collision process, the ligament formation and dimensions, the pinch off mechanism and the creation of the satellite droplet. The conversion of the droplet’s kinetic energy to the surface energy and vise versa, the energy viscous dissipation as well as the maximum deformation of the droplets are also evaluated.  相似文献   

5.
A structured computational framework to efficiently detect collision between deformable freeform shapes in a VR environment is proposed in this paper. The deformable shape is represented as a B-spline surface and no assumption is made with regard to the degree of the surface, extent of deformation or virtual material properties. The proposed technique calculates and stores transformation matrices and their inverse during preprocessing, which are then used to discretize the B-spline surfaces. It exploits the fact that the transformation matrices for calculating discrete points on the B-spline are independent of the position of control points and therefore can be pre-calculated. The intensity of the points is dynamically increased at lower levels of detail as per accuracy requirements, and finally the regions which are likely to undergo collision are tessellated using these points. Spheres are used to determine lower levels of detail which makes this algorithm highly suitable for multiple contact collision detection. The algorithm efficiently calculates tangents and surface normals at these points. The surface normals give inside/outside property to the triangulated region and tangents provide the necessary information to model tangential forces such as frictional forces. The proposed algorithm is especially suitable for sculpting during concept design and its validation before exchanging information with existing CAD softwares for detailed design. A comparison based on the worst case scenario is presented to prove the efficiency of the present algorithm.  相似文献   

6.
We describe a novel method for surgery simulation including a volumetric model built from medical images and an elastic modeling of the deformations. The physical model is based on elasticity theory which suitably links the shape of deformable bodies and the forces associated with the deformation. A real time computation of the deformation is possible thanks to a preprocessing of elementary deformations derived from a finite element method. This method has been implemented in a system including a force feedback device and a collision detection algorithm. The simulator works in real time with a high resolution liver model  相似文献   

7.
A discrete mechanics model for deformable bodies   总被引:1,自引:0,他引:1  
This paper describes the theory and implications of a discrete mechanics model for deformable bodies, incorporating behavior such as motion, collision, deformation, etc. The model is fundamentally based on inter-atomic interaction, and recursively reduces resolution by approximating collections of many high-resolution elements with fewer lower-resolution elements. The model can be viewed as an extended mass-spring model. We begin by examining the domain of conceptual design, and find there is a need for physics based simulation, both for interactive shape modeling and analysis. We then proceed with describing a theoretical base for our model, as well as pragmatic additions. Applications in both interactive physics based shape modeling and analysis are presented. The model is aimed at conceptual mechanical design, rapid prototyping, or similar areas where adherence to physical principles, generality and simplicity are more important than metric correctness.  相似文献   

8.
Fast contact handling of soft articulated characters is a computationally challenging problem, in part due to complex interplay between skeletal and surface deformation. We present a fast, novel algorithm based on a layered representation for articulated bodies that enables physically-plausible simulation of animated characters with a high-resolution deformable skin in real time. Our algorithm gracefully captures the dynamic skeleton-skin interplay through a novel formulation of elastic deformation in the pose space of the skinned surface. The algorithm also overcomes the computational challenges by robustly decoupling skeleton and skin computations using careful approximations of Schur complements, and efficiently performing collision queries by exploiting the layered representation. With this approach, we can simultaneously handle large contact areas, produce rich surface deformations, and capture the collision response of a character/s skeleton.  相似文献   

9.
This paper introduces a method for handling deformation in interactive, real time computer graphics simulations which involve deformable objects and require a high degree of visual realism. Our proposal, the virtual structure, is a “divide and conquer” approach, which combines a novel physical model with a geometric modelling utilizes the theory of elasticity and Newtonian mechanics, applied by a numerical method, the finite element method. Using different levels of structural resolution for global and local or collision with other objects. The geometric modelling uses the physical structure as a set of control points and produces a fine polygonal mesh generated by a B-spline surface. In order to demonstrate the method we have modelled the gallbladder as a spherical membrane containing liquid, in an interactive simulated environment for laporoscopic cholecystectomy.  相似文献   

10.
This paper presents a modular algorithm for six-degree-of-freedom (6-DOF) haptic rendering. The algorithm is aimed to provide transparent manipulation of rigid models with a high polygon count. On the one hand, enabling a stable display is simplified by exploiting the concept of virtual coupling and employing passive implicit integration methods for the simulation of the virtual tool. On the other hand, transparency is enhanced by maximizing the update rate of the simulation of the virtual tool, and thereby the coupling impedance, and allowing for stable simulation with small mass values. The combination of a linearized contact model that frees the simulation from the computational bottleneck of collision detection, with penalty-based collision response well suited for fixed time-stepping, guarantees that the motion of the virtual tool is simulated at the same high rate as the synthesis of feedback force and torque. Moreover, sensation-preserving multiresolution collision detection ensures a fast update of the linearized contact model in complex contact scenarios, and a novel contact clustering technique alleviates possible instability problems induced by penalty-based collision response.  相似文献   

11.
为了获得各结构参数对某轻型牵引榴弹炮射击稳定性的影响规律,建立了相应的全炮非线性有限元动力学模型.模型中考虑了驻锄与土壤的接触/碰撞,土壤的塑性变形等非线性因素.通过求解不同结构参数的有限元模型,找出对射击稳定性有重要影响的结构参数,在此基础上进行射击稳定性优化.计算结果显示,优化的轻型牵引榴弹炮射击稳定性有效提高.  相似文献   

12.
We propose a novel approach for dynamically simulating articulated rigid bodies undergoing frequent and unpredictable contact and collision. In order to leverage existing algorithms for nonconvex bodies, multiple collisions, large contact groups, stacking, etc., we use maximal rather than generalized coordinates and take an impulse-based approach that allows us to treat articulation, contact, and collision in a unified manner. Traditional constraint handling methods are subject to drift, and we propose a novel prestabilization method that does not require tunable potentially stiff parameters as does Baumgarte stabilization. This differs from poststabilization in that we compute allowable trajectories before moving the rigid bodies to their new positions, instead of correcting them after the fact when it can be difficult to incorporate the effects of contact and collision. A poststabilization technique is used for momentum and angular momentum. Our approach works with any black box method for specifying valid joint constraints and no special considerations are required for arbitrary closed loops or branching. Moreover, our implementation is linear both in the number of bodies and in the number of auxiliary contact and collision constraints, unlike many other methods that are linear in the number of bodies, but not in the number of auxiliary constraints.  相似文献   

13.
交互式乐器演奏的六自由度力觉渲染方法   总被引:1,自引:1,他引:0       下载免费PDF全文
目的在进行虚拟乐器交互演奏时,需要模拟触力觉-视觉-听觉多通道同步反馈,其中触力觉反馈的难点在于模拟人手操作乐器的六自由度(6-Do F)力觉交互过程。方法提出一种基于混合模型和单边约束优化的六自由度力觉合成方法,实现了虚拟人手和琴弦的多点多区域接触力觉模拟。虚拟人手采用层次化球树模型表达,古琴采用混合模型表达,其中琴体和琴弦分别采用层次化球树模型和直线解析模型。提出了基于混合模型的离散碰撞检测算法,实时检测虚拟手和琴弦是否产生碰撞;基于发生碰撞的几何元素对建立单边不可穿透约束方程,通过Active Set方法求解约束优化后方程,获得6维位姿变量保证图形显示场景中的虚拟手不会和琴弦产生穿透。为模拟琴弦变形,提出变直径的圆柱体模型来模拟琴弦在不同振动幅度下的动力学响应;提出交互状态敏感的力计算模型以刻画人手在弹奏不同状态琴弦(静态、振动态)的力觉感受差异。结果基于力觉交互设备Phantom Premium 3.0建立了实验平台,实验结果表明,本文算法可以模拟单点、多点等不同接触状态,并能模拟6维力和力矩,操作者可以感受到琴弦振动时的细腻力感觉,力觉交互过程稳定,算法计算效率在1 k Hz以上。结论算法可模拟针对琴弦一类的超薄形状物体的多点接触力觉交互过程,算法计算效率高,包含碰撞检测、约束优化、琴弦变形仿真等计算回路的更新频率也能达到要求,该混合模型能为后续复杂形状物体的碰撞响应研究提供思路。  相似文献   

14.
In this paper linear time-invariant dynamical systems described by a combination of differential equalities and static inequalities in state-space formulation are investigated. Of special interest is the contact problem: the effect of the boundary of the constraint set on the behavior of the system. This effect is studied by dividing the state-space in a number of disjunct subsets. It is shown that these subsets are invariant under linear state feedback. In our framework, a specific place is reserved for modeling the laws of collision, i.e., physical modeling, which are regarded as external factors. Our main results are a system theoretical framework in which we describe what happens upon contact and a definition of the constrained state-space system in terms of its restricted behavior. The results presented here can be considered as an extension for restricted linear systems of the classic positive invariance theory for linear systems  相似文献   

15.
To investigate the radiation characteristics of reflector antennas with surface deformation and perforation, the physical optics (PO) method and physical theory of diffraction (PTD) technique are used to calculate the far field and the diffraction of the reflector edge. The computational method is verified reliably by comparing the calculation curve with the experimental curve. As a consequence, the radiation patterns for different deformation properties and different perforation densities are computed. The results show that the deformation of the reflector surface greatly affects the radiation pattern. But in the calculated density range of holes, perforation affects the radiation characteristics less.  相似文献   

16.
Handling the evolving permanent contact of deformable objects leads to a collision detection problem of high computing cost. Situations in which this type of contact happens are becoming more and more present with the increasing complexity of virtual human models, especially for the emerging medical applications. In this context, we propose a novel collision detection approach to deal with situations in which soft structures are in constant but dynamic contact, which is typical of 3D biological elements. Our method proceeds in two stages: first, in a preprocessing stage, a mesh is chosen under certain conditions as a reference mesh and is spherically sampled. In the collision detection stage, the resulting table is exploited for each vertex of the other mesh to obtain, in constant time, its signed distance to the fixed mesh. The two working hypotheses for this approach to succeed are typical of the deforming anatomical systems we target. First, the two meshes retain a layered configuration with respect to a central point and, second, the fixed mesh tangential deformation is bounded by the spherical sampling resolution. Within this context, the proposed approach can handle large relative displacements, reorientations, and deformations of the mobile mesh. We illustrate our method in comparison with other techniques on a biomechanical model of the human hip joint  相似文献   

17.
The idea of creating collective aerial systems is appealing because several rather simple flying vehicles could join forces to cover a large area in little time in applications such as monitoring, mapping, search and rescue, or airborne communication relays. In most of these scenarios, a fleet of cooperating vehicles is dispatched to a confined airspace area and requested to fly close to a nominal altitude. Moreover, depending on the task each vehicle is assigned to, individual flight trajectories in this essentially two‐dimensional space may interfere, resulting in disastrous collisions. This paper begins by introducing a probabilistic model to predict the rate of midair collisions that would occur if nothing is done to prevent them. In a second step, a control strategy for midair collision avoidance is proposed, which is interesting because it requires only local communication and information about flight altitudes. The proposed strategy is systematically analyzed in theory and simulation as well as in experiments with five physical aerial vehicles. A significant reduction in collision rates can be achieved. Statistically, values close to zero are possible when the swarm's density is below an application‐dependent threshold. Such low collision rates warrant an acceptable level of confidence in collision‐free operation of a physical swarm. © 2011 Wiley Periodicals, Inc.  相似文献   

18.
In this paper, we present a prototype of a deformation engine to efficiently model and render the damaged structure of vehicles in crash scenarios. We introduce a novel system architecture to accelerate the computation, which is traditionally an extremely expensive task. We alter a rigid body simulator to predict trajectories of cars during a collision and formulate a correction procedure to estimate the deformations of the collapsed car structures within the contact area. Non-linear deformations are solved based on the principle of energy conservation. Large plastic deformations resulting from collisions are modelled as a weighted combination of deformation examples of beams which can be produced using classical mechanics.  相似文献   

19.
This paper presents a fast approach for computing tight surface bounds in meshless animation, and its application to collision detection. Given a high-resolution surface animated by a comparatively small number of simulation nodes, we are able to compute tight bounding volumes with a cost linear in the number of simulation nodes. Our approach extends concepts about bounds of convex sets to the meshless deformation setting, and we introduce an efficient algorithm for finding extrema of these convex sets. The extrema can be used for efficiently updating bounding volumes such as AABBs or k-DOPs, as we show in our results. The choice of particular bounding volume may depend on the complexity of the contact configurations, but in all cases we can compute surface bound orders of magnitude faster and/or tighter than with previous methods.  相似文献   

20.
针对高速列车的被动安全性,基于大变形碰撞仿真理论,用PAM CRASH进行碰撞仿真,用OptiStruct对车体端部防撞装置进行拓扑优化,从而完成防撞装置的轻量化设计.结果表明:在保证防撞装置结构稳定性的同时,最大撞击力减小23%,质量减轻33.6%,达到提高车辆被动安全性的目的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号