首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以81.5%的矿渣、5%的钢渣、12.5%的脱硫石膏以及1%的水泥熟料,制备出了28 d抗压强度为56.75 MPa的低碱度胶凝材料,该胶凝材料可用于制备低碱度人工鱼礁混凝土.通过改变钢渣和脱硫石膏的掺量,研究了其掺量变化与试件强度的影响关系.实验结果表明:在该体系中,当钢渣掺量小于5%时,胶砂试块的强度随着钢渣的增加而提高;当钢渣掺量大于5%时,胶砂试块的强度随着钢渣掺量的增加而降低,并在钢渣掺基大于20%时快速下降.脱硫石膏的掺量对胶砂试块的强度影响更为显著;当脱硫石膏掺量达到12.5%时,与不含脱硫石膏的试样相比,抗压强度和抗折强度分别提高了168%和176%.利用XRD和SEM分析净浆的水化过程,结果表明,体系在早期水化主要生成AFt相和C-S-H凝胶,并对强度的增长起了主要作用.  相似文献   

2.
朱江  李国忠  王英姿 《粉煤灰》2013,(6):25-26,39
以钢渣和脱硫石膏工业废渣为主要原料,掺加适量的激发剂,制备出脱硫石膏基低碱度钢渣胶凝材料,并探讨了其制品应用形式。试验结果表明,钢渣∶脱硫石膏(质量比)=1∶1时,胶凝材料的凝结时间为初凝6 min、终凝9 min,2 h抗折强度2.21 MPa、抗压强度5.06 MPa,1 d抗折强度2.03 MPa、抗压强度4.7 MPa,而7 d抗折强度和抗压强度分别达到3.59 MPa和12.55 MPa。  相似文献   

3.
采用磷石膏为主要原材料,与适量活性炭和粉煤灰混合后煅烧分解,制备新型高强复合胶凝材料.通过正交试验研究煅烧温度、保温时间、活性炭和粉煤灰掺量对新型胶凝材料中三氧化硫含量和抗压强度的影响.结果表明:当煅烧温度为1200℃,保温时间为30 min,活性炭掺量为10%,粉煤灰掺量为5%时,所制得胶凝材料的3d、28d抗压强度分别为46.35 MPa、92.70 MPa.该条件下,新型胶凝材料中三氧化硫含量为11.60%,煅烧过程中形成C2S、C3S及C3A等具有活性的矿物成分,28 d水化产物中出现氢氧化钙和钙矾石.与磷石膏制硫酸联产水泥工艺相比,该方法能耗低,工艺流程简单,熟料抗压强度高,可作为磷石膏资源化利用的新途径.  相似文献   

4.
研究了石膏品种和掺量对粉煤灰-石灰石粉-熟料复合胶凝材料胶砂强度的影响。研究发现,在石膏掺量相同的情况下,掺SO3含量较高石膏的试样2抗折强度和抗压强度均大于试样1(所掺石膏中SO3含量较低)。当采用同一品种石膏时,复合胶凝材料强度随石膏掺量增加而提高。试验显示在配制混合材料掺量较大的复合胶凝材料时,适当增加SO3含量可以促进复合胶凝材料强度的发展。  相似文献   

5.
以粉煤灰、电石渣、脱硫石膏、钢渣、矿渣等工业固体废弃物为主要原料,配制道路水稳层路用胶凝材料,全部或部分替代路用水泥,开展原料预处理加工和配比优化实验,考察原料细度和原料配方对胶凝试块强度的影响。结果表明:通过粉磨机械力活化,可明显增强固废的胶凝活性,其中,适宜的粉煤灰、电石渣、脱硫石膏、矿渣粉的中位径D50范围为8~12μm,而适宜的钢渣微粉中位径D50为5~8μm之间;通过固废超微粉原料间配方优化,可获得7 d和28 d强度分别为29.3 MPa和37.5 MPa的70%固废掺加量的无机胶凝粉体材料,该固废优化配比为粉煤灰:电石渣:脱硫石膏:钢渣:矿渣=31.8∶13.6∶9.1∶27.3∶18.2,按比例加入30%P·S42.5水泥,在此配方体系下,胶砂试块强度可以达到或超过纯路用32.5水泥强度指标。  相似文献   

6.
磷石膏基水硬性胶凝材料是近几年发展起来的一种以磷化工业副产物磷石膏为主要原料的新型建筑材料。与传统硅酸盐和矿渣水泥相比,磷石膏无活性不能直接作为胶凝材料,使用前必须对其进行改性。针对目前磷石膏基胶凝材料凝结时间长、早期强度低等缺点,研究了材料组成配比及外加剂对凝结时间和早期强度的影响,获得了磷石膏基胶凝材料的改性方法。当矿渣粉(KF)和硅基纳米粉末(WS)质量比为3∶17,水玻璃(NS)、富铝盐(NA)和高效聚羧酸减水剂(JS)的质量分数分别为0.3%、0.7%和0.3%时,可将其初凝时间控制在130~260 min、终凝时间控制在280~600 min;胶砂早期抗折强度3 d达3.5 MPa以上、7 d达5 MPa以上;早期抗压强度3 d达20 MPa以上、7 d达35 MPa以上。改性后的磷石膏基胶凝材料可替代25%~40%及以上普通硅酸盐水泥应用于建筑材料领域。  相似文献   

7.
采用钢渣、矿渣、三级粉煤灰、脱硫石膏和碱渣为原料制备全固废无熟料水泥,通过调整各个物料之间的比例,研究其凝结时间和抗压强度。研究发现:当钢渣掺入质量为30%时,28 d胶砂强度可达39.2 MPa;用10%的粉煤灰替代矿渣,28 d胶砂强度有少量降低,其值为36.1 MPa。加入Na2SiO3对全固废无熟料水泥凝结时间具有较好的调节效果,当Na2SiO3掺入质量为0.6%时,全固废无熟料水泥的初凝时间为145 min,终凝时间为239 min,与普通硅酸盐水泥相近。同时,Na2SiO3对全固废无熟料水泥的强度具有较好的激发效果,当Na2SiO3掺入质量为0.6%时,其28 d胶砂强度增大到49.5 MPa。  相似文献   

8.
采用煤矸石活化料、矿渣和熟料作为主要原料,外掺复合激发剂来制备煤矸石胶凝材料。研究了煤矸石活化料掺量、石膏掺量以及激发剂对煤矸石胶凝材料性能的影响;并借助XRD和SEM分析了其水化机理。试验结果表明:煤矸石活化料掺量为60%时,煤矸石充填胶凝材料的3 d、7 d和28 d抗压强度分别达到了15.2 MPa、22.8 MPa和35.5 MPa;石膏掺量为4%时,煤矸石充填胶凝材料的3 d、7 d和28 d抗压强度分别达到了15.7 MPa、24.4 MPa和37.8 MPa;复合激发剂最佳掺量为5%,煤矸石充填胶凝材料的3 d、7 d和28 d抗压强度分别达到了27.5 MPa、35.4 MPa和55.4 MPa。  相似文献   

9.
为了促进磷石膏资源化利用,以磷石膏、无水石膏、钢渣和P·Ⅱ52.5水泥为原材料,通过复配方法制备磷石膏复合(PSGW)胶凝材料并对其水化胶结过程进行研究。结果表明,当磷石膏质量分数为35%、无水石膏质量分数为5%、钢渣质量分数为10%、P·Ⅱ52.5水泥质量分数为50%时,制备出的PSGW胶凝材料3 d抗折强度为4.9 MPa、抗压强度为35.3 MPa; 28 d抗折强度为6.9 MPa、抗压强度为51.5 MPa、软化系数为0.88,满足P·O42.5 R等级要求。通过对PSGW胶凝材料进行XRD、FT-IR和SEM表征分析发现,该体系水化产物主要为棒状钙矾石、板块状水化硅酸钙、氢氧化钙和重结晶的二水硫酸钙。  相似文献   

10.
用卧辊磨将钢渣、矿渣分别粉磨成比表面积为450 m2/kg、500m2/kg的粉体,用其替代部分水泥熟料,分别进行了单掺钢渣粉及掺钢渣-矿渣复合粉的水泥基混凝土胶砂强度实验研究.实验结果表明:单掺钢渣时,随着钢渣替代水泥熟料的比例增大,胶砂强度有明显下降;当掺钢渣-矿渣复合粉替代50%的水泥熟料时,钢渣与矿渣会相互激发,相互促进水化.当钢渣在复合粉所占比例为20%时,水泥基混凝土胶砂强度达到最佳值,该成果有重要工程应用价值.  相似文献   

11.
以矿渣、钢渣、脱硫石膏为主要原料制备全固废胶凝材料,采用合理比例化学激发、物理磨细等手段检测其胶砂强度发现28天抗压强度能达到P.042.5水泥的强度等级。在预应力孔道压浆体系中要求超低的水胶比0.26~0.28,在此水胶比的限制条件下全固废胶凝材料可以替代水泥进行使用,最终强度大于50MPa,满足孔道压浆材料的技术指标。试验结果表明,石家庄周边辛集奥森钢铁有限公司提供的矿渣、钢渣,西柏坡电厂收集的脱硫石膏在比例为35:50:15时,所配制的孔道压浆材料工作性能和力学性能达到最优,每吨压浆材料降低成本165元。  相似文献   

12.
将钼尾矿、矿渣、熟料、石膏进行机械力粉磨,制备胶凝材料,研究了减水剂种类和掺量对胶砂力学性能的影响,并对掺钼尾矿胶凝材料的水化产物进行了分析.结果表明,在相同流动度条件下制备胶砂试块,PC减水剂对掺钼尾矿胶砂的强度提高幅度最大,FDN次之,UNF-5最小.当PC高效减水剂掺量为0.4%时,大掺量尾矿胶砂试块28 d的抗压强度可以达到48.8 MPa.粉磨后的钼尾矿表现出一定的火山灰反应活性.掺钼尾矿胶凝材料的水化产物主要是钙矾石和水化硅酸钙凝胶.  相似文献   

13.
刘子仪  宋少民 《硅酸盐通报》2023,(12):4197-4207+4215
为克服大掺量复合胶凝材料体系力学性能差的缺点,采用响应面法对混杂纤维复合胶凝材料体系进行优化,以钢纤维掺量、聚丙烯纤维掺量和脱硫石膏掺量为变量因素,以胶砂28 d抗折强度和抗压强度为评价指标,建立预测模型,并进行胶砂及混凝土试验验证。结果表明:当钢纤维体积掺量为0.4%、聚丙烯纤维体积掺量为0.116%和脱硫石膏质量掺量为8%时,复合材料的工作性能和力学性能均达到最优,28 d抗折强度和抗压强度预测值分别可达7.0和37.4 MPa;抗折强度和抗压强度的预测值和试验值相对误差仅为2.86%和1.32%,抗折强度和抗压强度试验值的标准差分别为0.148 8和1.345 9,该响应面法预测模型预测精度高,具有准确性和科学性。本研究印证了复合胶凝材料体系的优化效果,为复合材料多目标优化问题提供新的解决思路和试验依据。  相似文献   

14.
通过对鞍钢水淬矿渣进行化学分析,得到其质量系数为1.797,且矿渣质量好。以水泥熟料、脱硫石膏和工业芒硝为复合盐基激发剂,以鞍钢水淬矿渣微粉为主要胶凝活性材料,开展充填胶凝材料配方的优化正交试验。试验结果表明,对28d养护龄期充填体抗压强度影响程度从大到小的顺序是:水泥熟料、工业芒硝、脱硫石膏。通过激发剂掺量配比优化试验和极差及影响分析、试验验证,得到的全尾砂胶凝材料配方的最优配比是:脱硫石膏11%、水泥熟料4%、工业芒硝1%、矿渣微粉84%;验证试验得到其胶结充填体28d强度为3.68 MPa,为水泥胶结强度的1.58倍。  相似文献   

15.
以磷肥工业废弃物磷石膏为主要原料制备磷石膏基胶凝材料(PGF),研究镁盐晶须掺量对磷石膏基胶凝材料抗压强度、抗折强度、抗冲击功强度的影响,结合X射线衍射(XRD)和扫描电镜(SEM)等测试方法,对磷石膏基胶凝材料的微观性能进行分析。结果表明,当MSW掺量为3%,其3 d、7 d和28 d抗压强度分别为15 MPa、18 MPa和21.9 MPa,较未掺晶须试样分别提高了64.8%、26.8%、25.9%。3 d、7 d抗折强度提高33.1%、32.4%。镁盐晶须作为无机盐增强材料,分散在磷石膏基胶凝材料中不参与水化反应,主要通过桥联、拔出和剥离等物理作用增强增韧磷石膏基胶凝材料。  相似文献   

16.
为了促进钢铁冶金渣与化工废渣的高值化利用,以钢渣、矿渣、碱渣、脱硫石膏为原材料,通过活性激发剂与全固废材料间的组合协同作用制备海洋牧场人工鱼礁胶凝材料。胶凝材料中钢渣掺量为16%(质量分数,下同),矿渣为64%,碱渣为8%,脱硫石膏为12%,胶砂试块28 d抗压强度为52.6 MPa,在某些场合具有取代硅酸盐水泥的潜力。研究了东海海水条件下净浆试块浸泡15个月龄期内,钢渣与矿渣掺比对净浆试块抗压强度发展的影响,通过XRD、SEM、MIP等表征方法研究了全固废胶凝材料体系的水化产物。结果表明:钢渣和矿渣之间具有协同水化作用,其水化产物主要为钙矾石(AFt)、C-S-H凝胶和Friedel盐(FS),非晶态的C-S-H凝胶将针棒状的AFt与FS紧密结合在一起,这是整个体系强度的主要来源。本研究为大宗固废的妥善安置提供了科学依据。  相似文献   

17.
利用钢渣、矿渣制备低碳型胶凝材料   总被引:1,自引:0,他引:1  
以钢渣、矿渣和脱硫石膏为主要原料,添加少量激发剂制备低碳型胶凝材料,试验确定了制备该产品的最佳物料配比:矿渣41.75%,钢渣41.75%,800℃锻烧的脱硫石膏10%,硅酸盐水泥熟料5%,激发剂Ⅱ1.5%.产品达到GB175-2007<通用硅酸盐水泥>42.5复合硅酸盐水泥标准要求.  相似文献   

18.
宋少民  陈泓燕 《硅酸盐通报》2020,39(8):2557-2566
以铁尾矿微粉和低熟料胶凝材料体系为对象,主要研究了基准水泥-粉煤灰-矿渣粉组成的低熟料胶凝材料体系在铁尾矿微粉不同掺量下对混凝土的和易性、抗压强度、体积稳定性、耐久性,以及早期水化热的影响规律.结果 表明,在混凝土相同流动状态下,掺20%的铁尾矿微粉不会增大混凝土减水剂用量,28 d混凝土强度满足强度等级要求.掺15%的铁尾矿微粉能延长净浆和胶砂体系首次开裂时间,能够减小混凝土的后期干燥收缩.将铁尾矿微粉控制在20%的掺量以内时,不会降低混凝土的耐久性能.通过水化热试验发现,低熟料胶凝材料体系能够明显降低浆体早期水化热和最大放热速率.即便在大掺量下,铁尾矿微粉低熟料胶凝材料混凝土长龄期强度仍可以满足要求,具有应用的技术可行性.  相似文献   

19.
磷肥工业废弃物磷石膏和冶金工业废弃物富镁镍渣每年的排放量较大,由于二者具有胶凝活性较低和安定性差等缺点,导致其利用率较低。本文将原状磷石膏和富镁镍渣协同利用制备胶凝材料,研究了磷石膏-富镁镍渣基胶凝材料基础性能。通过对浆体的流动度、硬化体的力学性能,以及28 d吸水率和软化系数进行评价,为原状磷石膏和富镁镍渣协同综合利用提供实验支持。研究结果表明:磷石膏-富镁镍渣胶凝材料硬化体抗压强度28 d强度可达31.7 MPa,且耐水性好吸水率为2.46%,软化系数为0.91。将制得的磷石膏-富镁镍渣基胶凝材料硬化体与32.5普通硅酸盐水泥进行对比,性能相接近。  相似文献   

20.
为了研究高掺量粉煤灰胶凝材料的特性,通过SPSS软件优化设计了高掺量粉煤灰胶凝材料正交配比试验,并根据国标测定了该系列材料的相关特性参数,采用显著度分析、极差分析等手段研究了材料特性变化规律.该系列胶凝材料粉煤灰掺量最高达到95%,有较好的流动性及保水率,初、终凝时间可调,7 d单轴抗压强度为可达3.61 MPa,21 d单轴抗压强度可达8.09 MPa,28 d单轴抗压强度可达8.89 MPa.材料强度在早期增长速度较快,在21 d左右,材料强度基本稳定,增长速度大幅放缓,28 d左右能达到稳定强度.研究了材料流动性、保水率、凝结时间及单轴抗压强度与材料配比之间的关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号