首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
利用FLAC3D软件建立水力割缝模型,针对某掘进工作面,选取其正前方12 m处截面为研究对象,在缝槽高度和深度不变的情况下,模拟了单缝槽、双缝槽和多缝槽3种不同宽度缝槽的割缝方案,得到了瓦斯抽采钻孔割缝前后煤体内部应力变化和竖直位移变化、垂直于割缝钻孔上方煤体的下沉量及塑性区破坏情况。结果表明:当缝槽宽度为2 000 mm时,割缝钻孔的卸压效果明显,煤体下沉量较大,钻孔周围塑性区破坏较大,钻孔的稳定性最好。  相似文献   

2.
为增大煤层透气性系数,提高煤层瓦斯抽采效果,通过超高压水力割缝技术,增大煤体暴露面积,给煤层内部卸压、瓦斯释放和流动创造了良好的条件,缝槽上下的煤体在一定范围内得到较充分的卸压,增大了煤层的透气性。结果表明:水力割缝钻孔组瓦斯抽采浓度、纯流量、百米瓦斯抽采纯流量及瓦斯抽采率是对比钻孔的2~4倍,远远大于对比钻孔组,割缝钻孔瓦斯抽采效果显著。研究为其他类似矿井提供借鉴。  相似文献   

3.
为了解决矿井瓦斯预抽中存在的问题,提高矿井瓦斯抽采利用效率,杜绝瓦斯灾害事故发生,以新集二矿瓦斯预抽工艺为研究背景,针对矿井采掘接替紧张、煤层透气性差、瓦斯抽采率低等技术难题,提出了超高压水力割缝与水力压裂联合增透技术。基于岩石力学与流体力学理论,分析了超高压水力割缝与水力压裂联合增透机理。并采用数字模拟方法研究确定了沿槽缝延伸方向,缝槽至煤体深部依次形成破碎区、塑性区、弹性区及原岩应力区,被冲割煤体受高压水射流剪、割应力作用影响,原岩应力区向煤体深部转移,煤体渗透率增大。得出水力压裂钻孔布置在超高压水力割缝形成的塑性区范围内能够达到较好的增透效果,并设计了超高压水力割缝与水力压裂一体化联合增透技术工艺:割缝水压为95~100 MPa,旋转水尾转速为40 r/min,割缝间距为1.0~1.2 m,单刀冲割时间为12 min;水力压裂钻孔直径为95 mm,并采用100 mm的钻孔洗扩装置冲、扩钻孔。通过在新集二矿2201采区220108底板巷2号上钻场的应用结果显示:超高压水力割缝与水力压裂协同增透技术能够明显改善煤层透气性,瓦斯抽采30 d以后,协同超高压水力割缝钻孔平均瓦斯抽采纯量为普通钻孔的10.3倍;协同水力压裂钻孔平均瓦斯抽采纯量为普通钻孔的6.4倍,且能够持续保证较高流量和浓度的瓦斯抽采效果。  相似文献   

4.
针对古汉山矿低透气性煤层穿层抽采钻孔卸压不充分的问题,提出了割缝与压裂协同增透技术,基于弹性断裂力学和Biot经典渗流力学理论,采用数值模拟的方法,分析了割缝钻孔与压裂钻孔协同布置时不同条件下压裂裂缝扩展规律,确定割缝钻孔与压裂钻孔水平距离为4 m时压裂效果较好,缝槽相对于水平方向的倾角应避免为45°,割缝钻孔形成的缝槽可以控制压裂裂缝的扩展方向,裂缝影响范围内应力由约8 MPa下降至4 MPa以内。现场试验表明,距割缝钻孔2 m以内的煤体发生了位移,协同割缝钻孔的瓦斯抽采纯量是割缝钻孔的2.3倍,是普通钻孔的7.8倍,协同压裂钻孔的瓦斯抽采纯量是压裂钻孔的2.1倍,普通钻孔的5倍,瓦斯抽采效率显著提高。  相似文献   

5.
针对低透气性煤层瓦斯抽采量少,抽采时间长,煤层整体卸压增透效果差等问题,提出了大直径长钻孔定向水力割缝增透技术。以吉宁煤矿2107胶带运输巷为研究背景,分析了水力割缝增透机理,采用大直径长钻孔技术实现钻孔间煤体定向水力压穿,形成贯穿裂隙并通过高压水携带出大量煤屑,实现煤层卸压和增加煤层透气性。研究结果表明:采用水力割缝后平均抽采流量是普通钻孔的5.5倍,割缝孔平均瓦斯抽采纯量是普通孔平均瓦斯抽采纯量的8.06倍,平均浓度提高33.92%,水力割缝有效增加了煤层透气性,提高了瓦斯抽采率。  相似文献   

6.
时歌声 《煤炭科技》2020,41(1):23-26
运用FLAC3D软件模拟不同割缝压力和割缝间距条件下,钻孔周围煤体应力分布特征,分析了穿层钻孔水力割缝煤体卸压规律。通过在赵固二矿实施超高压水力割缝增透技术工艺,有效解决了单一低渗坚硬厚煤层瓦斯抽采技术难题,增大了抽采钻孔卸压范围,大幅提高了煤体透气性。  相似文献   

7.
张永将  黄振飞  李成成 《煤炭学报》2018,43(11):3016-3022
为解决深部矿井低透气性煤层瓦斯抽采难题,针对穿层钻孔提出了高压水射流环切割缝煤层自卸压增透技术。通过瓦斯流动理论分析普通钻孔及环割钻孔瓦斯流动模式,分别建立了普通钻孔及环割钻孔瓦斯流动微分方程,获得了高压水射流环切割缝自卸压技术改善煤层瓦斯流动机制;采用FLAC3D软件建模分析高压水射流割缝后钻孔周边煤体应力演化规律,基于煤体卸压程度及塑性区分布特征,确定了穿层钻孔合理化割缝参数;通过底板穿层钻孔高压水射流环切割缝技术现场考察,环切割缝后煤层变形量达到0.136%,煤层透气性系数较原始状态提高了42倍,瓦斯抽采纯量相较普通钻孔提高3.44~5.32倍,同等条件下煤层抽采半径提高了1倍以上。理论研究与现场试验均表明,采用高压水射流切割在煤层内部形成环形缝槽,能有效改善钻孔煤体应力状态,增加煤层渗透性,提高瓦斯抽采效率。  相似文献   

8.
穿层钻孔高压旋转水射流割缝增透防突技术研究与应用   总被引:1,自引:0,他引:1  
为了解决高瓦斯突出煤层巷道掘进过程中的煤与瓦斯突出问题,开发了将钻机钻进与射流割缝技术有机结合的穿层钻孔高压旋转水射流割缝增透防突技术。采用数值模拟的方法对比分析了钻孔和射流缝槽卸压效果,研究结果表明:割缝卸压比单纯钻孔卸压要优越很多,割缝缝槽破坏了钻孔周围的"瓶颈效应",多个割缝钻孔形成的裂隙相互导通,煤体透气性增大,促进瓦斯释放。工业性试验结果表明本卸压增透技术效果明显,瓦斯抽采流量、煤体扰动体积都有较大幅度增加,提高了瓦斯抽采效率。  相似文献   

9.
为了解决由于水力割缝压力、喷嘴大小、割缝时间等参数的选取不当导致煤层割缝深度浅、割缝后煤体卸压增透效果不理想、割缝作业期间钻孔憋孔、堵孔等问题,提出了超高压水力割缝精准控制技术,分析了割缝缝槽宽度、深度控制,割缝落煤速度控制,以及割缝区域效果控制,集成开发了ZGF-100(A)型超高压水力割缝装置,并进行了精准控制割缝现场应用试验。结果表明:采用超高压水力割缝精准控制技术对煤层进行割缝后,缝槽等效半径约为1.02~1.58 m,割缝钻孔平均抽采瓦斯纯量较普通对比钻孔增大约2倍,割缝钻孔抽采半径较对比钻孔增大1倍左右。  相似文献   

10.
《煤炭技术》2017,(3):165-167
通过数值模拟,验证了水力割缝对煤体卸压、增加了瓦斯流通通道;得到了最优的喷嘴出口压力为30 MPa;试验得到喷嘴直径准2 mm、收缩段长度10 mm、直柱段长度8 mm、内锥角13°的圆锥形喷嘴为最优参数。水力割缝在突出矿井瓦斯抽采现场应用表明:水力割缝影响半径范围内的钻孔瓦斯抽采的瓦斯流量、瓦斯浓度、瓦斯抽采量明显提高,强化抽采效果好。  相似文献   

11.
李生舟  陆占金 《煤炭技术》2020,39(2):121-124
介绍了超高压水力割缝技术及装备、防突原理和工艺方法。现场试验结果表明:超高压水力割缝技术运用后,钻孔瓦斯抽采浓度提升1.75倍,钻孔瓦斯抽采量提高2.3倍,抽采有效半径较对比钻孔提高2.1倍,超高压水力割缝技术卸压增透效果显著。  相似文献   

12.
为了解决松软煤层条件下水力割缝卸压增透效果差、割缝钻孔排渣困难的问题,开展了松软煤层条件的水力割缝工艺参数研究.在研究松软煤层水力割缝主要控制因素的基础上,分析了不同水力割缝工艺参数对割缝煤层卸压增透效果、钻孔瓦斯抽采的影响;通过现场考察不同工艺参数下水力割缝煤层瓦斯抽采效果、钻孔割缝出煤数据,得到了松软煤层最佳水力割...  相似文献   

13.
为了有效解决丁集矿高地应力、低透气性突出煤层煤巷条带瓦斯区域预抽效率低、预抽达标后区域验证指标仍超标的问题,在该矿1351(1)运输巷煤巷条带穿层预抽钻孔进行了超高压水力割缝卸压增透技术应用研究,利用水力割缝卸压增透原理确定了超高压水力割缝设备组成,选型配套了超高压清水泵、超高压软管、超高压旋转水尾、水力割缝钻杆、高低压转换割缝器、钻头和超高压远程操作台等超高压水力割缝设备,考察了相同孔径未割缝钻孔、割缝钻孔瓦斯涌出量及割缝钻孔瓦斯抽采量,理论研究了百米煤孔初始瓦斯涌出量、瓦斯涌出衰减系数及不同预抽时间、预抽率条件下的有效抽采半径,现场检验了顺层钻孔预抽措施单元、穿层钻孔水力冲孔措施单元、穿层钻孔水力割缝措施单元的预抽瓦斯区域防突措施效果,统计了不同措施预抽单元局部补充措施执行情况、局部措施效果,分析评价了超高压水力割缝卸压增透效果。结果表明:针对丁集矿11-2煤层工程条件选型配套的超高压水力割缝设备参数是合理的,在1351(1)运输巷煤巷对11-2煤层条带进行穿层钻孔超高压水力割缝措施卸压增透效果显著,与未增透措施相比,煤层透气性系数提高了25.9倍、113 mm孔径的穿层钻孔百米煤孔初始瓦斯涌出量提高了5.5倍、瓦斯涌出衰减系数降低了73.4%、预抽15 d和30 d达35%预抽率的钻孔间距提高了84.3%和53.0%,与穿层钻孔水力冲孔相比,煤巷条带防突局部补充措施工程量降低了50.0%、煤巷平均掘进速度增加了1倍。  相似文献   

14.
针对阳泉矿区煤层透气性低瓦斯难以抽采特点,研究提出了水力切槽及脉冲水力压裂相结合的新型煤层增透技术,该技术利用水力切割缝槽卸载钻孔周围应力并形成初始导向裂缝,采用定向脉动水力压裂致裂煤体,提高煤体渗透率和卸压增透范围,改变煤体应力场和瓦斯流动场。研究结果表明:切槽钻孔单孔瓦斯抽采累计混合量约是常规孔的10倍以上,单孔抽采混合量约是常规钻孔的20倍以上,钻孔瓦斯抽采最高浓度是常规组钻孔的2~3倍,有效提高阳泉矿区低渗煤层穿层钻孔瓦斯抽采能力,达到煤层整体卸压增透及瓦斯高效抽采的目的。  相似文献   

15.
李川  吕英华  梁文勖 《煤炭工程》2022,(S1):111-115
针对登茂通煤矿1~#煤层在深部区域整体透气性差、瓦斯含量高、传统抽放方法效果差的问题,提出利用超高压水力割缝卸压增透技术提高煤层透气性,并在108底抽巷进行工业试验。通过控制变量法确定在1~#煤层开展超高压水力割缝卸压增透的最优化参数,其中,割缝压力为60~70MPa,割缝时间为25min、割缝转速为80r/min,割缝间距为2m。通过割缝钻孔与普通钻孔抽采情况对比分析,表明割缝后钻孔的抽采浓度是普通钻孔的1.75倍,抽采纯量是普通钻孔的3.25倍,抽采达标时间降低了42%,煤层残余瓦斯含量明显减小,瓦斯抽采效果显著提高。  相似文献   

16.
水力割缝(压裂)综合增透技术在丁集煤矿的应用   总被引:3,自引:1,他引:2  
介绍了水力割缝(压裂)综合增透技术的工作原理、设备、工艺以及现场试验情况。通过水力割缝扩大穿层钻孔煤孔段的直径,从而达到增加钻孔的煤层暴露面积和卸压范围,增大钻孔抽排瓦斯量,提高钻孔的抽排效果。通过水力压裂使钻孔周围煤体产生更多裂隙,改变煤体物理性质。水力割缝(压裂)综合增透技术为提高低透气性煤层的瓦斯抽放效果提供了一个经济可行的技术途径。  相似文献   

17.
研究探索了水力割缝使钻孔周围煤体中的瓦斯由单向的径向流动变为径向和轴向双向流动,通过对扰动煤体的割缝宽度、平均单孔瓦斯抽采纯量、抽采半径的考察,分析了水力割缝技术和钻孔抽采技术的数据,得出了平均单孔抽采效果提高约3倍的结论。  相似文献   

18.
为了解决低透气性坚硬煤层顺层钻孔抽采影响范围小、抽采效果差等问题,分析了坚硬煤层高压水射流破坏过程,采用数值模拟的方法研究了超高压水射流环形割缝卸压增透机制,研制了新型超高压水力割缝成套装置,并现场考察了坚硬煤层煤巷条带顺层钻孔超高压水力割缝应用效果。结果表明:采用超高压水力割缝后,坚硬煤层透气性提升约20倍,钻孔平均抽采瓦斯纯量提高2.0~2.5倍,抽采达标时间缩短67%以上,月掘进速度提高约50%,掘进期间无瓦斯异常现象,实现了坚硬煤层煤巷条带安全、快速掘进。  相似文献   

19.
为解决赵庄煤业松软煤层瓦斯抽采率低的难题,以水力割缝技术为试验研究基础,在二盘区北回风巷进行了抽放效果对比考察,对不同穿层割缝钻孔布置方式及参数下瓦斯抽采浓度、抽采量等数据进行分析,摸索出适合赵庄煤业的以水力割缝技术增透的技术参数.试验表明,水力割缝钻孔与普通钻孔相比,瓦斯抽采浓度提高了1.49倍,抽采流量增加了3.02倍,瓦斯抽采效率显著提高.  相似文献   

20.
钻孔抽采影响半径是确定钻孔布置的基础参数,但关于高压水射流割缝缝槽形态及缝槽形态与钻孔抽采影响半径的影响关系目前尚无系统研究。根据缝槽形态实验结果将缝槽形态简化为圆盘,基于淹没射流结构理论分析缝槽圆盘尺寸,采用COMSOL软件研究不同条件煤层的割缝钻孔抽采影响半径,并进行现场测试试验。结果表明:割缝钻孔抽采影响半径与缝槽圆盘、渗透率、抽采时间、瓦斯压力等因素均呈幂函数关系,因素影响显著程度依次为渗透率、抽采时间、瓦斯压力、缝槽圆盘;高压水射流割缝缝槽体积与理论分析确定的缝槽圆盘体积的相对差值为8.33%,在抽采时间130 d时的实测钻孔抽采影响半径与数值模拟的相对差值为6.20%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号