首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal Cutting of Hard Alloys – Turning and Grinding. Part I: Structure and Properties of Hard Alloys Hard alloys count among the materials that contain hard phases. This involves primary and/or eutectic hard phases embedded in a metallic matrix. The characteristics of the individual microstructural constituents may be combined to form a material featuring excellent wear resistance and a high resistance to fracture. For that reason, the material can be widely used in all applications where the wear resistance to abrasion is essential. In the event low operating temperatures are involved the component costs to service life ratio speaks for hard alloys on Fe basis. Above 600 °C heat resistant Ni and Co matrices are to be given preference. Carbides and borides of the transition metals are specially suited as hard phases. They attach well to the surrounding matrix. Nowadays, alloys of the FeCrC system are primarily employed for economic reasons. As nickel-based material the NiCrSiB alloying system is frequently employed. Hard alloys on cobalt basis usually belong to the CoCrWC (stellite) system. In many fields of application components of this material group require a largearea metal cutting technique (eg for barrel extruders, crushing rollers, valve seats). However, problems may be encountered during machining due to the high hardness and excellent wear resistance of this material. The structural difference between hard phases and metallic matrix causes different reactions to stresses exerted during the machining process. Process-related changes of the microgeometric surface characteristics and the physical condition of the surface zone of a material are paraphrased by the term “surface integrity”. To create a basis for assessing the machining influence on the multiphase component surface layer, the first part of the paper discusses manufacturing techniques, constitution of the microstructure and main properties of the individual structural components.  相似文献   

2.
Metal Cutting of Hard Alloys – Turning and Grinding. Part II: Turning of Hard Alloys Turning tests were carried out on selected hard alloys on iron (FeCr12C2.1, FeCr13Nb9MoTiC2.3, FeCr14Mo5WVC4.2) and cobalt basis (CoCr29W5C1.3) in a cutting speed range of between vc = m/min and 180 m/min. Polycrystalline cubic boron nitride (PCBN) turned out to be a suitable tool material. Subsequent examinations focused on evaluating the mechanisms of chip formation, cutting tool wear and surface integrity of the workpiece. During turning of hard alloys the formation of chips is primarily influenced by the ductility and fracture toughness of the work material. While a ductile matrix enables the formation of highly deformable chips, the chips stemming from martensitically hardened alloys show low deformation. As the cutting depth increases shear and segmented chips are chiefly produced. Type and arrangement of the hard phases play a significant role. Adhesion is the main wear mechanism impacting the cutting face of the tool. Particularly, strong adhesion effects will arise during the machining of the work hardening alloy on cobalt basis. A high cobalt content of the metallic bonding phase of the PCBN cutting tool appears to be a disadvantage with this type of work material. When machining alloys on iron basis adhesion is promoted by the mechanical linking of alloy-specific hard phases to the cutting material binder. Abrasion primarily acts on the flank. The hard carbides of the work material produce typical grooves in the cutting edge zone of the tool. The flank wear increases as the carbide content goes up. As the cutting speed rises the tool wear ascertained passes through a minimum. Whereas the formation of built-up cutting edges predominates at lower speeds, a thermal softening of the PCBN binder takes place and is dominating at high cutting speeds. The location of the wear minimum depends not only on the cutting temperature but also on the strain hardening capability of the metal matrix. Raising the cutting speed will cause the cutting force to continuously reduce. The highest cutting forces are found for the Co-based alloy. The passive forces develop in line with cutting tool wear and vary with content and hardness of the hard phases involved. The selected process parameters also affect the surface near zone. With low cutting speeds and process temperatures the surface is mainly stressed mechanically. Carbides break or detach from the surrounding matrix. If the cutting speed and process temperature are increased the eutectic carbides (M7C3) are deformed together with the metal matrix. Microhardness profiles are indicative of near-surface strain-hardened zones after cutting of the Co-based alloy. Fe-based matrices do not show hardness changes worth mentioning. Although there are no new hardened zones noticeable even at maximum cutting speed, the matrix is nevertheless influenced thermally so that residual stresses will develop in the machined surface layer. In the lower cutting speed range the surface quality is characterized by flakes and material squeezing (Co-based alloy) and by spalling (Fe-based alloy). Only if the cutting speed is raised, a minor roughness is detected due to a potential deformation of eutectic hard phases.  相似文献   

3.
In this paper, experimental investigations are carried out by end milling process on hardened tool steel, Impax Hi Hard (Hardness 55 HRC) a newly developed tool steel material used by tool and die making industries. Experiments are performed with an aim to study performance investigations of machining parameters such as cutting speed, feed, depth of cut and width of cut with consideration of multiple responses viz. volume of material removed, tool wear, tool life and surface finish to evaluate the performance of PVD coated carbide inserts and ball end mill cutters. It has been observed through scanning electron microscope, X-ray diffraction technique (EDX) that chipping and adhesion are active tool wear mechanisms and saw-toothed chips are formed while machining of Impax Hi Hard steel. It is also noticed out that tool life is not enhanced while machining with minimum quantity lubricant than dry machining. From the investigations, it is observed that hard machining can be considered as an alternative to grinding and EDM, traditional methods of machining difficult-to-machine materials i.e. hardened steel with hardness greater than 50 HRC with a scope of improved productivity, increased flexibility, decreased capital expenses and reduced environmental waste.  相似文献   

4.
The machining of high performance workpiece materials requires significantly harder cutting materials. In hard machining, the early tool wear occurs due to high process forces and temperatures. The hardest known material is the diamond, but steel materials cannot be machined with diamond tools because of the reactivity of iron with carbon. Cubic boron nitride (cBN) is the second hardest of all known materials. The supply of such PcBN indexable inserts, which are only geometrically simple and available, requires several work procedures and is cost-intensive. The development of a cBN coating for cutting tools, combine the advantages of a thin film system and of cBN. Flexible cemented carbide tools, in respect to the geometry can be coated. The cBN films with a thickness of up to 2 µm on cemented carbide substrates show excellent mechanical and physical properties. This paper describes the results of the machining of various workpiece materials in turning and milling operations regarding the tool life, resultant cutting force components and workpiece surface roughness. In turning tests of Inconel 718 and milling tests of chrome steel the high potential of cBN coatings for dry machining was proven. The results of the experiments were compared with common used tool coatings for the hard machining. Additionally, the wear mechanisms adhesion, abrasion, surface fatigue and tribo-oxidation were researched in model wear experiments.  相似文献   

5.
Advanced materials, such as high abrasion resistant cast iron, have great applications for abrasive and erosive environments. Since the amount and the hardness of the microstructural carbides constituents in this material is extremely high, the abrasion-resistance cast iron is generally difficult to be machined with traditional cemented carbide tool. The hard and abrasive particles in this material can remarkably shorten the cutting tool life through abrasion of tool face and deterioration of cutting edge. In this article, Cubic Boron Nitride (CBN) cutting tool has been used to machine a novel-abrasion-resistance (N-AR) cast iron. The performances of CBN tool under different lubrication conditions were evaluated in view of tool wear, cutting force, and surface roughness (Rz). Further more, the wear rate of CBN tool under different machining condition and the mechanism of the CBN tool in machining of this type of work materials has also been investigated.  相似文献   

6.
Under higher cutting conditions, machining of 17-4 precipitation hardenable stainless steel (PH SS) is a difficult task due to the high cutting temperatures as well as accumulation of chips at the machining zone, which causes tool damage and impairment of machined surface finish. Cryogenic machining is an efficient, eco-friendly manufacturing process. In the current work, cutting temperature, tool wear (flank wear (Vb) and rake wear), chip morphology, and surface integrity (surface topography, surface finish (Ra), white layer thickness (WLT)) were considered as investigative machinability characteristics under the cryogenic (liquid nitrogen), minimum quantity lubrication (MQL), wet and dry environments at varying cutting velocities while machining 17-4 PH SS. The results show that the maximum cutting temperature drop found in cryogenic machining was 72%, 62%, and 61%, respectively, in contrast to dry, wet, and MQL machining conditions. Similarly, the maximum tool wear reduction was found to be 60%, 55%, and 50% in cryogenic machining over the dry, wet, and MQL machining conditions, respectively. Among all the machining environments, better surface integrity was obtained by cryogenic machining, which could produce the functionally superior products.  相似文献   

7.
Productivity in the machining of titanium alloys is adversely affected by rapid tool wear as a consequence of high cutting zone temperature. Conventional cutting fluids are ineffective in controlling the cutting temperature in the cutting zone. In this research work, an attempt has been made to investigate the effect of liquid nitrogen when it is applied to the rake surface, and the main and auxiliary flank surfaces through holes made in the cutting tool insert during the turning of the Ti–6Al–4V alloy. The cryogenic results of the cutting temperature, cutting forces, surface roughness and tool wear of the modified cutting tool insert have been compared with those of wet machining. It has been observed that in the cryogenic cooling method, the cutting temperature was reduced by 61–66% and the surface roughness was reduced to a maximum of 36% over wet machining. The cutting force was decreased by 35–42% and the flank wear was reduced by 27–39% in cryogenic cooling over that of wet machining. Cryogenic cooling enabled a substantial reduction in the geometry of tool wear through the control of the tool wear mechanisms. The application of liquid nitrogen to the heat generation zones through holes made in the cutting tool insert was considered to be more effective over conventional machining.  相似文献   

8.
Titanium alloys are utilized in many engineering fields such as chemical, industrial, marine, and aerospace due to their unique properties. Machining of these materials causes severe problems. At high temperatures, they become chemically active and tend to react with tool materials. In the present study, fuzzy logic (a tool in artificial intelligence) is used for the prediction of cutting parameters in turning titanium alloy (Ti-6Al-4V). The parameters considered in this study are cutting speed, feed, and the depth of cut. Fuzzy rule-based modeling is employed for prediction of tool flank wear, surface roughness, and specific cutting pressure in machining of titanium alloy. These models can be effectively used to predict the tool flank wear, surface roughness, and specific cutting pressure in machining of titanium alloys. Analysis of the influences of the individual important machining parameters on the responses have been carried out and presented in this study.  相似文献   

9.
Machining of light metals Magnesium, aluminium and titanium are the only light metals that are also used in construction. They offer a significant prerequisite for weight reduction of workpieces. Especially the automotive and the aerospace industry have an increasing interest in using these lightweight materials as well as their alloys. The machining of light metals however is accompanied with several problems. With increasing the cutting speed high adhesive and abrasive effects between the cutting tool material and the workpiece material can occur. These effects lead to unsteady processes and also have a negative influence on the quality of functional surfaces as well as their subsurface properties. The influence of cutting tool materials, tool coatings and cutting conditions affecting the process when cutting magnesium, aluminium and titanium alloys is described. Adhesion can be reduced when machining magnesium and aluminium alloys in particular by the application of diamond-coated tools and by PCD-inserts. Diamond tools, due to their low coefficient of friction and the high thermal conductivity, furthermore contribute to the decrease of the thermal load within the contact zone between workpiece and cutting tool. Subsequently the danger of magnesium chip ignition can be minimized. For the machining of titanium alloys modern coatings based on (Ti,Al)N and TiCTiN are applied to reduce the adhesive and abrasive wear.  相似文献   

10.
Abstract

The high specific strength of metal matrix composite (MMC) materials is derived from the combined effects of light, ductile and hard, brittle materials being incorporated in a matrix composite. The hard, brittle phase in this composite can cause problems when machining such materials. The most commonly encountered problems are those involved in producing an acceptable surface finish, avoiding very rapid tool wear and achieving acceptable machining costs, through the use of higher machining speeds. However, in order for MMC materials to be widely accepted into the mainstream automotive, aerospace, and mechanical engineering industries, cost effective machining solutions will be required. Increasingly, machining with polycrystalline diamond (PCD) and grinding with diamond abrasives (two examples of ultra hard materials) are being utilised as the most effective machining methods in the manufacture of MMC components. The present paper explores the inherent problems involved in the machining of MMCs and the suitability of ultrahard tooling technology in overcoming many of these problems. The importance of PCD grade selection and optimised machining conditions are particularly important when machining MMCs, and these are reviewed in detail. The versatility of PCD for use in practically all metal cutting operations is also illustrated. The paper concludes with a number of case studies demonstrating how ultrahard tooling technology has been applied to produce economically a wide range of engineered MMC components in the automotive, aerospace, and mechanical engineering industries.  相似文献   

11.
Machining of Components of Al Matrix Composites The microstructure of metal matrix composites consists of hard reinforcements which are embedded in a metal matrix. The high hardness of the reinforcements leads to a difficult processing of these materials. The present paper demonstrates the machining of components of Al matrix composites for the automotive and the aircraft industry. The components are SiC particle reinforced brake drums, cylinder blocks with local Si particle and Al2O3 short fiber reinforced cylinder liners and TiB2 particle reinforced extrusion molding profiles. The investigations illustrate that good results can be achieved when machining these components by turning, boring, drilling and milling with polycrystalline diamond (PCD) or CVD diamond thick‐film cutting tool materials.  相似文献   

12.
Tool coatings for dry machining During dry machining a strain collective consisting of mechanical, thermal, and chemical loads is imposed upon the cutting edge. Compared to conventional machining using cooling lubrication fluids, the loads are increased in dry cutting. A feasible solution to protect the cutting edge from thermal wear, abrasion, and tribo‐oxidation is the application of hard coatings. Newly developed CrxAlyYzN, CrxAlyBzN and CrxAlySizN PVD coatings were both evaluated in tribological model tests and machining tests concerning their suitability for dry cutting applications. Herein, the used coating technology and the coating properties are described in detail. The measured tool wear and the process forces give further hints for the optimization of the coating system.  相似文献   

13.
Final Machining of Aluminium Matrix Composites by means of Turning Aluminium matrix composites usually consist of a relatively soft as well as ductile matrix alloy and a hard ceramic reinforcing component in the form of fibers, particles or whiskers, which are embedded in it. The very different characteristics of the composite elements on the one hand facilitate the specific aiming of appropriate combinations of material properties by selection of the components as well as their quantitative ratio. But on the other hand, during machining they cause permanently changing loads on the cutting edge of the tool. Apart from the rapid tool wear, damages of the workpiece surface due to ripped out or destroyed particles proves to be a problem during final machining of such components. The reliable generation of an extensively flawless surface with a small roughness sets high demands on the cutting material, tool geometry and cutting parameters. In order to achieve a long tool life super‐hard CVD diamond tippings (chemical vapour deposition = CVD) are used for the research. On the basis of turning tests with aluminium matrix composites the potential of chip breakers as well as an especial tool nose geometry to improve the workpiece surface is described under consideration of the feed.  相似文献   

14.
High-speed steel circular saw blades are widely used in industry for a variety of cut-off operations that require a combination of high-dimensional accuracy and a good-quality surface finish. The authors have been involved in an extensive programme of work to evaluate the effectiveness of applying advanced surface engineering treatments to enhance the performance and life characteristics of this form of tool. The work included optimizing cutting conditions with respect to tool performance when machining different workpiece materials, characterizing the wear mechanisms developed throughout tool life, and evaluating of the effect of different substrate surface preparations and advanced surface engineering treatments on the performance and wear characteristics of the tool.One interesting feature to arise from the work that has not been reported elsewhere has been the notable variation in performance and wear characteristics of nominally identical tools machining materials with similar hardness. The current paper compares the performance and wear characteristics of high-speed steel circular saw blades machining a tool steel and a nimonic nickel-based alloy (340–390 Hv. These are termed difficult to cut materials because of their poor machinability. A comparison is also made of the performance and wear characteristics of an Inconel nickel-based alloy and a low-carbon steel (120–150 Hv), both of which exhibit good machining characteristics. Differences identified between the resulting wear mechanisms emphasize the difficulties inherent in developing a universal tooth geometry and advanced surface engineering coating system that would be effective for all machining applications.  相似文献   

15.
In this article, response surface methodology has been used for finding the optimal machining parameters values for cutting force, surface roughness, and tool wear while milling aluminum hybrid composites. In order to perform the experiment, various machining parameters such as feed, cutting speed, depth of cut, and weight (wt) fraction of alumina (Al2O3) were planned based on face-centered, central composite design. Stir casting method is used to fabricate the composites with various wt fractions (5%, 10%, and 15%) of Al2O3. The multiple regression analysis is used to develop mathematical models, and the models are tested using analysis of variance (ANOVA). Evaluation on the effects and interactions of the machining parameters on the cutting force, surface roughness, and tool wear was carried out using ANOVA. The developed models were used for multiple-response optimization by desirability function approach to determine the optimum machining parameters. The optimum machining parameters obtained from the experimental results showed that lower cutting force, surface roughness, and tool wear can be obtained by employing the combination of higher cutting speed, low feed, lower depth of cut, and higher wt fraction of alumina when face milling hybrid composites using polycrystalline diamond insert.  相似文献   

16.
High-speed turning experiments on metal matrix composites   总被引:3,自引:0,他引:3  
The hard abrasive ceramic component which increases the mechanical characteristics of metal matrix composites (MMC) causes quick wear and premature tool failure in the machining operations. The aim of the paper is to compare the behaviour of high rake angle carbide tools with their diamond coated versions in high-speed machining of an Al2O3Al 6061 MMC. The influence of the cutting parameters, in particular cutting feed and speed, on tool wear and surface finish has been investigated. The higher abrasion resistance of the coatings results in increased tool life performances and different chip formation mechanisms.  相似文献   

17.
Several magnesium alloys with different particle and short fibre reinforcements have been machined for the investigations reported here. The main problem when machining metal matrix composites (MMC) is tool wear, which is caused by the very hard and abrasive reinforcements. Therefore it is necessary to find suitable cutting tools for the MMC and the different machining operations. In addition it is required to investigate the cutting conditions considering tool wear, surface quality, accuracy and surface integrity. In this papaer the results of investigations concerning drilling and reaming of different MMC are presented.  相似文献   

18.
In the current study, attempt has been made to investigate the influence of cutting speed (Vc) (51, 84, and 124 m/min) on various machining characteristics like chip morphology, chip thickness ratio, tool wear, surface, and sub-surface integrity during dry turning of Inconel 825. Comparable study was carried out using uncoated and commercially available chemical vapor deposition multilayer coated (TiN/TiCN/Al2O3/ZrCN) cemented carbide (ISO P30 grade) insert. Chip morphology consists of chip forms obtained at different cutting conditions. Serrated chips were observed when machining Inconel 825 with both types of tool with more serration in case of uncoated insert. The chip thickness ratio increased as cutting speed was increased. Use of multilayer coated tool also resulted in increase in chip thickness ratio. Rake and flank surfaces were examined with scanning electron microscope and optical microscope. Abrasion, adhesion, and diffusion wears were found to be dominating tool wear mechanism during dry machining of Inconel 825. The beneficial effect of coated tool over its uncoated counterpart was most prominent during machining at high cutting speed (Vc = 124 m/min). The surface and sub-surface integrity obtained with coated tool were superior to that while machining Inconel 825 with uncoated tool.  相似文献   

19.
EN-31 (AISI 52100, hardness 55 HRC) is one of the difficult-to-cut steel alloys and it is commonly used in shafts and bearings. Nowadays, it is becoming a challenge to the cutting tool material for economical machining of extremely tough and hard steels. In general, CBN and PCBN tools are used for machining hardened steel. However, machining cost using these tools becomes higher due to high tool cost. For this purpose, carbide tool using selective coatings is the best substitute having comparable tool life, while its cost is approximately one-tenth of CBN tool. In this work, the newly developed second-generation TiAlxN super nitride (i.e., HSN2) is selected for PVD coating on carbide tool insert and further characterized using thermogravimetric analysis and differential scanning calorimetry for oxidation and thermal stability at high temperature. Later, HSN2-coated carbide inserts are successfully tested for their sustainability to expected tool life for turning of AISI 52100 steel. In the present study, forces, surface finish, and tool wear are used as a measure to appraise the performance of hard turning process. Experimentally, it is found that speed, feed rate, and depth of cut have considerable impact on forces, insert wear, and surface roughness of the machined surface.  相似文献   

20.
This study investigated the cutting performance of coated CC6050 and uncoated CC650 mixed ceramics in hard turning of hardened steel. The cutting performance was mainly evaluated by cutting force components and tool wear. The planning of experiments was based on Taguchi’s L36 orthogonal array. The response surface methodology and analysis of variance were used to check the validity of multiple linear regression models and to determine the significant parameter affecting the cutting force components. Tool wear progressions and, hence, tool life, different tool wear forms and wear mechanisms observed for tools coated with TiN and uncoated mixed ceramics are presented along with the images captured by digital and electron microscope. Experimental observations indicate higher tool life with uncoated ceramic tools, which shows encouraging potential of these tools to hard turning of AISI H11 (50 HRC). Finally, tool performance indices are based on units which characterise machined cutting force components and wear when hard turning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号