首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non‐waxy and waxy rice starches adjusted to 20% moisture (wet based, w.b.) were heated in a differential scanning calorimeter to determine the optimum parameters for producing slowly digestible starch (SDS). Starches heated to the temperature of melting (Tm) and held for 60 min in the calorimeter showed a slow digestibility compared to unheated samples. Digestibility decreased by 25 and 10%, respectively, for non‐waxy and waxy rice starches relative to non‐treated starches. Heat‐moisture treatment of waxy corn, non‐waxy corn and wheat starches at the Tm determined for non‐waxy rice starch did not result in significant decreases in digestibility. For waxy rice starches heat‐treated in microwave or conventional ovens at the Tm , there were slight but significant increases in digestibility of the treated starches compared to non‐treated starches at all incubation times. Digestibility was higher for starches heated for 30 min than for 60 min. Non‐waxy rice starches did not show any significant changes in digestibility. Heat‐moisture treatment at the Tm and the holding time of sample at that temperature in a differential scanning calorimeter were found to be significant to the formation of slowly digestible heat‐moisture treated starch.  相似文献   

2.
Debranching starch by pullulanase is considered to improve the RS content of starch which is widely used to produce the starch‐based foods with high‐health benefit impacts. In this study, the cassava and potato starches were debranched by pullulanase, followed by an autoclave treatment and storage at −18°C, 4°C, or 25°C to investigate their crystallinity and functional properties. After debranching, the potato starch contained significantly higher CL (35.4 glucose units) than did the cassava starch (32.4 glucose units). The debranched cassava and potato starches after retrogradation at the storage temperatures had a typical B‐type crystalline structure although the native cassava and potato starches exhibited the different crystalline forms (A‐ and B‐type, respectively). The RS contents of the debranched cassava and potato starches significantly improved with higher RS content of the debranched potato starch than that of the debranched cassava starch at the same storage condition. The storage temperature significantly affected the RS formation of the debranched starches with the highest RS content at storage temperature of −18°C (35 and 48% for the debranched cassava and potato starches, respectively). The debranched starches had significantly lower viscosities and paste clarities but higher solubilities than did the native starches. As a result, the debranched cassava and potato starches can be considered for use not only in functional foods with enhanced health benefits but also in pharmaceutical and cosmetic industries.  相似文献   

3.
Cassava starch was debranched using pullulanase and the linear glucans recrystallized by incubation at 60°C or by temperature cycling at 120/60°C, and further subjected to heat‐moisture treatment (HMT). Resistant starch (RS III) contents increased from 21.4 g/100 g in the debranched starch (DS) to 67.3 g/100 g in the debranched starch incubated at 60°C (DRS) and 47.8 g/100 g in the debranched starch subjected to temperature cycling (DCS), and further to 84.8 g/100 g and 88.4% g/100 g in HMT‐DRS and HMT‐DCS, respectively. Total crystallinity varied between 31.4‐59.8% and the crystalline type was C in DS and DRS and A in DCS, HMT‐DRS and HMT‐DCS. The melting properties were characterized by broad endotherms, but the exact melting region and enthalpy were dependent on recrystallization method. The main endothermic peaks of DS and DRS occurred at 103.9 and 109.8°C, respectively, whereas DCS exhibited split endotherms at 113.6 and 138.1°C. Heat‐moisture treatment broadened the endotherms and increased their enthalpies. Scanning electron micrographs revealed surface topography differences related to size and aggregation of individual crystalline bodies.  相似文献   

4.
Cassava starch was debranched by treatment with isoamylase and pullulanase and the yield of resistant starch type III (RS III) optimized with respect to starch solids concentration (7.5‐15%, w/v), incubation time (8‐24 h) and enzyme concentration using central composite rotatable design. Higher concentrations of pullulanase (10‐35 U/g starch) compared to isoamylase (30–90 mU/g starch) were required to give a similar degree of starch hydrolysis within the experimental domain. A clear debranching end‐point was identifiable by following the reducing value, blue value and β‐hydrolysis limit of cassava starches debranched using isoamylase. It was difficult to define a debranching endpoint of pullulanase treatment by these parameters due to contaminating α‐D ‐(1→4) activity. The yield of RS III was significantly higher in isoamylolysates and increased steadily with increasing degree of hydrolysis to peak at 57.3%. Purification of the debranched material further increased the RS III yield to 64.1%. Prolonged (24 h) hydrolysis of cassava starch with high concentration of pullulanase (35 U/g) gave lower RS III contents in the purified (34.2%) and unpurified (36.2%) hydrolysates compared to 49.5 and 62.4%, respectively, at moderate pullulanase concentration (22.5 U/g) and incubation time (16 h).  相似文献   

5.
Waxy and normal maize starches of various pH values and salt contents were prepared, irradiated with gamma rays (5–20 kGy) and their molecular structure, pasting viscosity and rheological properties determined. Average molar mass and size of both waxy and normal maize starches decreased considerably by irradiation from >338.0×106 to <39.4×106 g/mol and from >237.5 to <125.2 nm, respectively. Adjustments of pH had little influence on the average molar mass and size of irradiated starch, whereas incorporation of salt greatly reduced the molar mass and size of irradiated waxy and normal maize starches. As the pH increased from 4 to 8, the pasting viscosity of the irradiated starches decreased from 1032 to 279 mPa s in waxy and from 699 to 381 mPa s in normal starches. Pasting viscosity of both irradiated waxy and normal starch decreased from 689 to 358 mPa s and from 327 to 184 mPa s as the salt concentration increased from 1 to 5%. The G′ of gels, determined during cooling from 90 to 10°C or storage for 8 h, decreased in irradiated waxy and normal starches by pre‐conditioning at pH 8 and in irradiated waxy starches by pre‐conditioning at 5% NaCl. With 5% NaCl, G′ of irradiated normal maize starch during cooling increased up to the irradiation level of 10 kGy, and increased during storage for 8 h at all levels of irradiation. Incorporated salt prior to irradiation appears to induce incremental modifications in the molecular structure, rheological and retrogradation properties of starch by boosting the degradation of molecules.  相似文献   

6.
Presently ready-to-eat cereals are coated with high levels of sugar coating to extend the bowl life. Because of health concerns of added sugar, there is a need to identify alternative coating materials. This study was designed to test the efficacy of debranched corn starches with varying amylose contents as a cereal coating. Hylon VII (70% amylose), common, and waxy corn starches were gelatinized and debranched, and then sprayed onto ready-to-eat breakfast cereal flakes. The surface morphology, milk absorption, texture, and digestibility of coated cereals were determined. A starch film with a thickness of 50 to 130 μm was observed with scanning electron microscopy on the surface of the cereals coated with Hylon VII. All starch-coated cereals had a lower milk absorption value than the uncoated and glucose-coated controls. Among starch coatings, common corn starch and Hylon VII resulted in lower milk absorption than did waxy corn starch. After soaking in milk for 3 min, the peak force and work to peak of the cereals coated with corn starches were higher than those of the glucose control and uncoated reference. The cereals coated with Hylon VII were found to have an increase in dietary fiber content. The results suggest that debranched amylose-containing corn starches could extend the bowl-life of ready-to-eat cereals. Practical Application: Currently, many cereals are coated with sugar to keep them from becoming soggy in milk. However, added sugar has been linked to obesity, hyperactivity, and dental caries. This has led to the investigation of alternative coating materials. This study employed the film-forming properties of enzyme-treated corn starch to function as a coating material in breakfast cereal flakes. In addition, the enzyme-treated high amylose corn starch also increased the dietary fiber content of the cereal flakes.  相似文献   

7.
In this study, the microstructure of starch granule and in vitro starch digestibility were compared in de‐coated seeds of common bean variety Hwachia and its NaN3‐induced mutants. Significant differences in starch granule size (between 17.92 and 27.00 μm), total starch content (between 436.5 and 456.8 mg per seed) and resistant starch content (between 51.6 and 203.3 mg per seed) were found among mutants. Both boiling and autoclaving decreased resistant starch content in processed common beans. Significant difference in predicted gylcaemic index (pGI) (between 48.82 and 64.55%) for processed beans also existed among mutants. However, 96 h of 4 °C storage increased resistant starch content in processed common beans, possibly resulted from starch retrogradation during storage. Mutants SA‐05, SA‐08 and SA‐31, which have smaller seed weight and lower pGI (average of 50.08%) compared to Hwachia (pGI of 57.05%), can be used to produce common bean based low GI dietary carbohydrate.  相似文献   

8.
赵凯  李君  谷广烨 《食品科学》2017,38(1):177-181
以玉米原淀粉为原料,研究普鲁兰酶脱支处理糊化后制备缓慢消化淀粉(slowly digestible starch,SDS)过程中各影响因素(温度、p H值、酶用量、贮藏及干燥条件)对SDS形成的影响。结果表明,在57.5℃、p H 4.9、酶用量60 U/g的条件下脱支8 h,然后煮沸灭酶30 min,再经4℃冷藏、60℃干燥后,可得SDS含量为31.09%的产品。原淀粉、酶脱支处理样品及脱支并去除快速消化淀粉样品的X射线衍射图谱表明,脱支处理后,玉米淀粉结晶结构由A型向B型转变。因此,通过酶脱支处理提高SDS含量的可能原因是形成了新的结晶结构,SDS含量与结晶的数量和质量有关。采用酶法制备SDS具有较好的工业化应用前景。  相似文献   

9.
Starches from normal rice (21.72% amylose), waxy rice (1.64% amylose), normal corn (25.19% amylose), waxy corn (2.06% amylose), normal potato (28.97% amylose) and waxy potato (3.92% amylose) were heat-treated at 100 °C for 16 h at a moisture content of 25%. The effect of heat-moisture treatment (HMT) on morphology, structure, and physicochemical properties of those starches was investigated. The HMT did not change the size, shape, and surface characteristics of corn and potato starch granules, while surface change/partial gelatinization was found on the granules of rice starches. The X-ray diffraction pattern of normal and waxy potato starches was shifted from B- to C-type by HMT. The crystallinity of the starch samples, except waxy potato starch decreased on HMT. The viscosity profiles changed significantly with HMT. The treated starches, except the waxy potato starch, had higher pasting temperature and lower viscosity. The differences in viscosity values before and after HMT were more pronounced in normal starches than in waxy starches, whereas changes in the pasting temperature showed the reverse (waxy > normal). Shifts of the gelatinization temperature to higher values and gelatinization enthalpy to lower values as well as biphasic endotherms were found in treated starches. HMT increased enzyme digestibility of treated starches (except waxy corn starch); i.e., rapidly and slowly digestible starches increased, but resistant starch decreased. Although there was no absolute consistency on the data obtained from the three pairs of waxy and normal starches, in most cases the effects of HMT on normal starches were more pronounced than the corresponding waxy starches.  相似文献   

10.
The goal of the research was to prepare maltodextrins (MD) from waxy wheat starch and waxy corn starch (control). Waxy wheat starches with 0.2% protein, 0.2% lipid and ∼1% amylose were isolated from two flours by mixing a dough, dispersing the dough in excess water, and separating the starch and gluten from the resultant dispersion. The mean recoveries were 72% for the starches and 76% for the gluten fraction with 80% protein. Maltodextrins having low‐dextrose equivalence (DE) 1—2 and mid‐DE 9—10 were prepared by treatment of 15% slurries of waxy wheat starch and waxy corn starch at 95 °C for 5—10 min and 20—50 min, respectively, with a heat‐stable α‐amylase. Denaturing the enzyme and spray‐drying produced MD's with bulk densities of 0.3 g/cm 3. The powdery MD's were subjected to an accelerated‐rancidity development test at 60 °C, and an off‐odor was detected after 2 days storage for the low‐DE MD's from the two waxy wheat starches (WxWS1‐MD 1.2 and WxWS2‐MD 1.5), but not for the low‐DE waxy corn maltodextrin (WxCS‐MD 2.2) or a commercial waxy corn MD with DE 1. None of the mid‐DE 9—10 MD's developed off‐odor after 30 days storage at 60 °C. The experimental products WxWS1‐MD 9.2, WxWS2‐MD 9.9 and WxCS‐MD 9.1 showed high water‐solubility and gave 1—10% aqueous solutions of high clarity with no clouding upon cooling.  相似文献   

11.
The effects of pullulanase debranching of sago (Metroxylon sagu) starch in the granular state and subsequent physical treatments on the formation and yield of type III resistant starch (RS 3) have been investigated. Sago starch was enzymatically debranched with pullulanase at 60°C and at pH 5.0 using different enzyme concentrations (24, 30, 40, 50 PUN/g dry starch) which was added to 20% (w/v) starch slurry and incubated for 0 to 48 h. Optimum enzyme concentration of 40 PUN/g dry starch and three debranching times (8, 16 and 24 h) have been selected for subsequent preparation of RS. Granule morphology and molecular weight distribution (MWD) of the debranched and resistant starch were examined. Debranched starch samples showed blurred birefringence patterns, a decrease in amylopectin fraction, an increase in low molecular weight fraction and a broadening of MWD. Debranched starch samples with a maximum RS yield of 7% were obtained at 8 h debranching time. Temperature cycling and incubation at certain temperature and storage time enhanced the formation of RS. Under the conditions used in this study, the optimum conditions to obtain the highest RS yield (11.6%) were 8 h of debranching time, followed by incubation at 80°C for seven days. The MWD analysis showed that RS consisted of material with relatively low degree of polymerization. This study showed that pullulanase treatment of starch in the granular state resulted in limited debranching of amylopectin but the subsequent physical treatments (incubation time/temperature) can be manipulated to promote crystallization and enhance formation of RS 3.  相似文献   

12.
Mixed starches with an amylose content of 5, 10, 18, 20, 23, and 25% were prepared by blending starches isolated from waxy and non‐waxy wheat at different ratios. The dynamic viscoelasticity of mixed 30% and 40% starch gels was measured using a rheometer with parallel plate geometry. The change in storage shear modulus (G′) over time at 5 °C was measured, and the rate constant of G′ development was estimated. As the proportion of waxy starch in the mixture increased, starch gels showed lower G′ and higher frequency dependence during 48 h storage at 5 °C. Since the amylopectin of waxy starch granules was solubilized more easily in hot water than that of non‐waxy starch granules, mixed starch containing more waxy starch was more highly solubilized and formed weaker gels. G′ of 30% and 40% starch gels increased steadily during 48 h. 30% starch gel of waxy, non‐waxy and mixed starches showed a slow increase in G′. For 40% starch gels, mixed starch containing more waxy starch showed rapidly developed G′ and had a higher rate constant of starch retrogradation. Waxy starch greatly influenced the rheological properties of mixed starch gels and its proportion in the mixture played a major role in starch gel properties.  相似文献   

13.
Starch isolated from two accessions of cow cockle (Saponaria vaccaria L.) seeds consisted of uniform size polygonal granules 0.3–1.5 μm in diameter, having 18% amylose content and a melting peak temperature 68°C. The intact granules gave the A-type X-ray diffraction pattern. The debranched starch exhibited the typical bimodal distribution of amylopectin chains (CL 45 and 12) on Biogel P-10. Lipids associated with the cow cockle starch preparations, involving surface and internal lipids, included triglycerides (45%), free fatty acids (FFA, 39%), lysophospholipids (10%) and diglycerides (6%). The major fatty acids found in polar and FFA fraction were palmitic, oleic and linoleic acids. Cow cockle starch exhibited similar viscoamylograph viscosity, solubility and swelling profiles to those of rice starch. Concentrated starch gels also showed the typical viscoelastic behavior of non-waxy cereal starches. In vitro digestibility studies of cow cockle granular starch with B. Subtilis indicated that this starch, compared to rice, is very susceptible to α-amylolysis presumably because of its small granule size.  相似文献   

14.
In vitro digestibility of hydroxypropylated and cross-linked waxy and non-waxy rice starches was investigated to find the proper resistant starch (RS) assaying method for chemically modified starches. RS and total dietary fiber (TDF) content of hydroxypropylated and cross-linked waxy and non-waxy rice starches were measured using the approved AOAC RS assay procedure (AOAC method 2002.02) and the AOAC TDF assay procedure (AOAC method 985.29). Hydroxypropylation did not alter the RS content of waxy and non-waxy rice starches (less than 1% of RS). Cross-linking also did not change the RS content of waxy and non-waxy rice starches (less than 1% of RS). It is interesting to note that non-RS content decreased with increasing hydroxypropylation (97-80%) and cross-linking (99-95%) in both waxy and non-waxy rice starches. This indicates that some fraction of RS in hydroxypropylated and cross-linked waxy and non-waxy rice starches cannot be measured using approved AOAC RS and TDF assay procedures. Therefore, the RS and TDF assay procedures performed in this study are not appropriate to determine the RS content of chemically modified starch. Further investigation is needed to develop a method to determine the RS content of chemically modified starch.  相似文献   

15.
Amylosucrase-treated waxy corn starch (AS) was produced to extend the chain length of amylopectin to a great extent in comparison to its native chain length. An amylopectin–palmitic acid (PA) complex was prepared by heat-treating (121°C) a starch/PA mixture and its subsequent further incubation (95°C, 24 h); moreover, its structure and digestibility were studied. Unmodified waxy starch could not complex at all, whereas elongation due to amylosucrase modification allowed amylopectin to form a complex with PA to a small extent. Complexation between AS and PA caused a decrease in relative crystallinity. The AS–PA complex displayed an endothermic peak representing type I inclusion complexes rather than type II complexes. The formation of complexes did not significantly affect the in vitro digestibility maintaining the low digestibility of AS resulting from extremely small amounts of complexes and the type of complex.  相似文献   

16.
Resistant starch has drawn broad interest for both potential health benefits and functional properties. In this study, a technology was developed to increase resistant starch content of corn starch using esterification with citric acid at elevated temperature. Waxy corn, normal corn and high‐amylose corn starches were used as model starches. Citric acid (40% of starch dry weight) was reacted with corn starch at different temperatures (120–150°C) for different reaction times (3–9 h). The effect of reaction conditions on resistant starch content in the citrate corn starch was investigated. When conducting the reaction at 140°C for 7 h, the highest resistant starch content was found in waxy corn citrate starch (87.5%) with the highest degree of substitution (DS, 0.16) of all starches. High‐amylose corn starch had 86.4% resistant starch content and 0.14 DS, and normal corn starch had 78.8% resistant starch and 0.12 DS. The physicochemical properties of these citrate starches were characterized using various analytical techniques. In the presence of excess water upon heating, citrate starch made from waxy corn starch had no peak in the DSC thermogram, and small peaks were found for normal corn starch (0.4 J/g) and Hylon VII starch (3.0 J/g) in the thermograms. This indicates that citrate substitution changes granule properties. There are no retrogradation peaks in the thermograms when starch was reheated after 2 weeks storage at 5°C. All the citrate starches showed no peaks in RVA pasting curves, indicating citrate substitution changes the pasting properties of corn starch as well. Moreover, citrate starch from waxy corn is more thermally stable than the other citrate starches.  相似文献   

17.
Structural characterizations and digestibility of debranched high-amylose maize starch complexed with lauric acid (LA) were studied. The cooked starch was debranched by using pullulanase and then complexed. Light microscopy showed that the lipids complexed starches had irregularly-shaped particles with strong birefringence. Gel-permeation chromatograms revealed that amylopectin degraded to smaller molecules during increasing debranching time, and the debranch reaction was completed at 12 h. Debranching pretreatment and prolonged debranching time (from 2 h to 24 h) could improve the formation of starch lipids complex. X-ray diffraction pattern of the amylose–lipid complexes changed from V-type to a mixture of B- and V-type polymorphs and relative crystallinity increased as the debranching time increased from 0 to 24 h. In DSC thermograms, complexes from debranched starch displayed three separated endotherms: the melting of the free lauric acid, starch–lipid complexes and retrograded amylose, respectively. The melting temperature and enthalpy changes of starch–lipid complex were gradually enhanced with the increasing of debranching time. However, no significant enthalpy changes were observed from retrograded amylose during the starch–lipid complex formation. Rapidly digestible starch (RDS) content decreased and resistant starch (RS) content increased with the increasing of debranching time, while the highest slowly digestible starch (SDS) content was founded at less debranching time of 2 h. The crystalline structures with dense aggregation of helices from amylose-LA complex and retrograded amylose could be RS, while SDS mostly consisted of imperfect packing of helices between amylopectin residue and amylose or LA.  相似文献   

18.
The effects of heat–moisture treatment (HMT; moisture content of 25%, at 100°C for 24 h) on starch chain distribution and unit chain distribution of amylopectin in normal rice, waxy rice, normal corn, waxy corn, normal potato, and waxy potato starches were investigated. After HMT, starch chain distribution (amylose and amylopectin responses) of waxy corn and potato starches were identical to those of untreated starches, whereas the chromatographic response of waxy rice starch showed a slight decrease, but with a slight increase in peak tailing. This result indicated that HMT had no (or very limited) effect on the degradation of amylopectins. Analysis of unit chain distribution of amylopectins revealed that waxy characteristics affected the molecular structure of amylopectin in untreated starches, i.e., the CL of normal‐type starches was greater than that of waxy‐type starches. After HMT, the CL and unit chain distribution of all starches were no different than those of untreated starches. The results implied that changes in the physico‐chemical properties of HMT starches would be due to other phenomena rather than the degradation of amylopectin molecular structure. However, the thermal degradation of amylopectin molecules of waxy starches could occur by HMT at higher treatment temperatures (120 and 140°C).  相似文献   

19.
Influence of diverse botanical sources (wheat, maize, waxy maize, cassava, potato, rice or waxy rice) on in vitro native starch digestibility has been investigated. Physicochemical properties (chemical composition, particles size and shape, surface features) of starch granules were determined with a view to explaining digestibility differences between samples. Rapidly digestible starch (RDS), slowly digestible starch (SDS) and resistant starch (RS) contents were measured according to Englyst method. Potato starch was shown to be composed of large rounded granules having smooth surfaces, which explains its slow enzymatic breakdown. Potato starch displayed the highest RS (86%) content and the lowest RDS content (9.9%). Since RS positively influences health and SDS may result in cell, tissue and/or organ damages, potato starch is an ideal starch nutrient. Conversely, waxy rice starch was rich in amylopectin and displayed small diameters and angular shapes, which are both known to facilitate enzymatic starch hydrolysis. It exhibited a near-zero RS content (0.9%) and a high RDS fraction (60%). According to this study, potato starch exhibited the best nutrient profile, followed up in this order by cassava, waxy maize, wheat, maize and waxy rice starches.  相似文献   

20.
Recombinant amylosucrase (200 U/mL) from Neisseria polysaccharea was used to produce digestion‐resistant starch (RS) using 1–3% (w/v) corn starches and 0.1–0.5 M sucrose incubated at 35°C for 24 h. Characterization of the obtained enzyme‐modified starches was investigated. Results show that the yields of the enzyme‐modified starches were inversely proportional to the original amylose contents of corn starches. After enzymatic reaction, insoluble RS contents increased by 22.3 and 20.7% from 6.9% of waxy and 7.7% of normal corn starches, respectively, using 3.0% starch as acceptor and 0.3 M sucrose as donor, while amylomaize VII showed the lowest increase (8.5%) in RS content. The crystalline polymorph of these enzyme‐modified starches resulted in the B‐type immediately after enzymatic reaction. The enzyme‐modified starches displayed higher melting peak temperatures (85.6–100.6°C) compared to their native starch counterparts (70.1–78.4°C). After enzymatic reaction, pasting temperature increased in waxy (71.9 → 77.6°C) and normal corn starches (75.3 → 80.6°C), and the peak viscosity of waxy corn starches increased from 264 to 349 RVU, whereas that of normal corn starches decreased from 235 to 66 RVU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号