首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Cyclic material behaviour of magnesium die castings and extrusions   总被引:2,自引:0,他引:2  
An increasing number of components are designed by using the local strain concept. This concept is commonly used for many different materials. The question is, can the local concept be used for components made of magnesium alloys? Therefore the material behaviour must be described and the material properties need to be adequate.

The main topic of the present investigations is the verification of the Masing and memory behaviours. These two material properties are necessary for the component design by the local strain concept. Therefore the cyclic deformation behaviour is investigated in strain controlled tension compression tests. The magnesium die casting alloys AZ91 and AE42 and the magnesium extrusions AZ31 and AZ80 are tested. The magnesium die castings show approximately Masing behaviour, but the hysteresis of magnesium differs from the hysteresis of steel. All investigated magnesium alloys show the material memory M2.

The magnesium extrusions show a totally different behaviour in tension and in compression. The hysteresis in experiments differs from the calculated hysteresis for the cyclic stress–strain curve. The Masing behaviour cannot be observed because of the strong anisotropic behaviour in tension and in compression direction.

The calculation by the local strain concept cannot be used for the investigated magnesium extrusions without modifications because the hysteresis in tensile and in compression direction is very asymmetric. The cyclic stress–strain curve of the extrusions can only be described approximately by the Ramberg–Osgood equation.  相似文献   


2.
The cyclic deformation behaviour of Mg – base alloy AZ31 The cyclic deformation behaviour of Mg – base alloy AZ31 was investigated in stress controlled tension-, compression-tests. Experiments with zero mean stress (R = -1) as well as with tensile or compression mean stress (R = 0, R = - ∞ resp.) were carried out. Cyclic strain hardening and a pronounced anisotropy of strength during the first loading cycles was observed with higher yield strength in tension compared with compression. Consequently, in tests with zero mean stress cyclic creep and compressive mean strains occured.  相似文献   

3.
Abstract

For extruded magnesium alloy, prior compression along extrusion direction has great influences in the flow stress during subsequent tension. Detwinning plays an important role for these influences. In the present study, the effects of different prestrains on strain hardening behaviour during subsequent tension were examined in an extruded magnesium alloy AZ31. The results showed that the existence of detwinning decreased the tensile yield stress. Samples with different prestrains exhibited different strain hardening behaviour during subsequent tension. The reorientation due to detwinning had a great effect on strain hardening during tension. In addition, the effect of detwinning on ultimate elongation was investigated. The results showed that the sample with higher prestrain always has higher ultimate elongation due to the contribution of detwinning on macroscopic strain.  相似文献   

4.
Thermal fatigue of magnesium‐base alloy AZ91 Thermal fatigue tests of the magnesium‐base alloy AZ91 were carried out under total strain control and out‐of‐phase‐loading conditions in a temperature range between ‐50°C and +190°C. Specimens produced by a vacuum die casting process were loaded under constant total strain and uniaxial homogeneous stress. To simulate the influence of different mean stresses, experiments were started at different temperature levels, e.g. the lower, mean or upper temperature of the thermal cycle. The thermal fatigue behavior is described by the resulting stress amplitudes, plastic strain amplitudes and mean stresses as a function of the number of thermal loading cycles. Depending on the maximum temperature and the number of loading cycles, cyclic softening as well as cyclic hardening behavior is observed. Due to the complex interaction of deformation, recovery and recrystallization processes and as a consequence of the individual temperature and deformation history, thermal fatigue processes of the material investigated cannot be assessed using results of isothermal experiments alone. The upper temperatures or the resp. temperature amplitudes determine the total fatigue lifetime.  相似文献   

5.
Abstract

The purpose of the present work was to investigate room temperature cyclic deformation and crack propagation behaviour in the most widely used die casting magnesium alloy AZ91HP with different heat treatments. In addition, examination of the low cycle fatigue properties of solid solution treated alloy AZ91HP-T4 was emphasised in comparison with AM50HP. Obvious cyclic strain hardening was found in low cycle fatigue tests, especially for AZ91HP-T4 at high cyclic strain amplitudes. Nevertheless, it was very difficult to evaluate differences in low cycle fatigue behaviour between die casting alloy AZ91HP-F, artificially aged alloy AZ91HP-T6, solution treated alloy AZ91HP-T4, and AM50HP(-F) because of the scatter of test data. However, it may be concluded that the last two alloys had greater plastic strain components during cyclic deformation, and AZ91HP-T4 exhibited a longer fatigue life than that of AM50HP at the highest strain amplitude. According to results of tests carried out on AZ91HP compact tension (CT) specimens, it was concluded that solution treatment could reduce the fatigue crack propagation rate, and plasticity induced crack closure was considered to have a predominant effect on fatigue crack propagation.  相似文献   

6.
为探讨AZ31B挤压态镁合金棒材沿径向取样的循环变形特征,开展了0.75%,1.0%,2.0%和4.0%应变幅下应变控制的非对称压-压循环变形实验。结果表明:在小应变幅(0.75%,1.0%)下,循环变形的滞回曲线表现出较好的对称性;在大应变幅(2.0%,4.0%)下,滞回曲线对称性差,且在滞回曲线上出现拐点;随着循环周次增加,塑性应变幅呈现下降趋势,材料均表现出循环硬化行为,在小应变幅下循环拉伸阶段对材料硬化率远大于压缩阶段的硬化率,而在大应变幅下这种区别并不明显。分析表明,沿径向取向的〈1120〉丝织构镁合金,小应变幅下位错滑移在整个寿命周期内作用更大;大应变幅下,随着塑性变形的增加,循环过程中变形机制发生演化,较低临界剪切应力(critical resolved shear stress,CRSS)的基面位错和拉伸孪生不能完全满足变形要求,较高CRSS滑移系启动及残余孪晶使得滞回曲线出现拐点;循环变形过程中不完全的孪生-去孪生过程使基体中存在大量残余孪晶,影响了循环变形过程的硬化率,同时降低了疲劳寿命。  相似文献   

7.
在AZ31B镁合金板材的板面内沿不同方向进行单向拉伸和压缩试验,研究挤压板材的力学性能。结果表明,变形AZ31B镁合金板材具有显著的各向异性和拉压非对称性。在板面内,沿挤压方向拉伸时的屈服应力明显地比沿同方向压缩和沿其他方向拉伸或压缩时的高(约2倍);沿45°斜向拉伸的屈服应力和抗拉强度较低,而延伸率最高;这种非对称性主要表现为屈服非对称和塑性流动非对称,即拉压的屈服应力不相等和拉压应力-应变曲线形状不同,压缩曲线表现出特殊的"S"型。基于晶体塑性理论,讨论了引起变形镁合金的各向异性和拉压非对称性力学性能的变形机理。  相似文献   

8.
Application Potential of Magnesium Extrusions New developments in the field of magnesium extrusion technology expand the range of magnesium applications. Especially, if combined with magnesium die castings, budget‐priced ultra light weight structures can be realised. Alloy development allows a significant increase in speed of operation of the extrusion process, which is about inversely proportional to the manufacturing cost. An overview regarding mechanical properties, extrusion speed and the cost aspects of magnesium extrusions is given.  相似文献   

9.
Twinning at thermal fatigue of magnesium alloy AZ31 In this paper results of thermal fatigue tests of the magnesium base alloy AZ31 carried out in a temperature range between ‐50 °C and +290 °C are presented. Specimens were loaded under constant total strain and uniaxial homogeneous stresses. The resulting materials behaviour is described by stress amplitudes, plastic strain amplitudes and mean stresses as a function of the number of thermal loading cycles. It is well known that AZ31 shows different stress‐strain behaviour during tensile and compressive loading resp. at lower temperatures due to the fact that mechanical twinning depends on the loading direction. However untwinning processes may occur during unloading and reloading in the opposite direction. As a consequence, during the first thermal loading cycles, typical consequences of the formation and the dissolution of twins are observed. The interaction of deformation, recovery and recrystallization processes, characteristic for individual temperature ranges are discussed in detail to analyze the damage progress during thermal fatigue.  相似文献   

10.
The fatigue behaviour of AZ31B extrusion magnesium alloy under load‐control cyclic test conditions is estimated using a combination of simulation and experimental results. The strain measurement of this asymmetric material is found experimentally using a Fibre Bragg Grating (FBG) sensor during rotating bending tests. Then, to analyse applied stresses in the sample – particularly in the plastic deformation range – the Variable Material Property (VMP) method is employed. Using this simulation method, the hysteresis loops of two critical top and bottom elements of the sample's cross section under different bending moments are obtained. Finally, the strain of the sample during rotating bending, as measured by the embedded FBG sensor, is related to the stresses obtained from the modeling using a mapping function. The hystereses obtained from this combination of the modeling and experimental results are compared with the results of a companion strain‐control pull–push test in which the input strain history was that of measured by the FBG sensor. Observations verify that the stresses of the combined VMP‐FBG hysteresis loops have good compatibility with the stress responses obtained through the experiment. The hybrid model introduced in this work can be employed to capture cyclic hysteresis, and hence estimate the fatigue life, under load‐controlled rotating bending tests.  相似文献   

11.
Cyclic deformation behavior and fatigue life of squeeze-cast AZ31 magnesium alloy was studied under stress amplitude-control at room temperature. Low and high cycle fatigue tests with engineering stress amplitudes in the range from 40 to 110 MPa were conducted. Analysis of hysteresis curves was performed. Tension–compression asymmetry of hysteresis loops was not observed; the alloy exhibited cyclic hardening in tension and compression. The fatigue life in the low cycle fatigue region was expressed by Wöhler and derived Manson–Coffin curves. Experimental data in both, the low and high cycle fatigue regions were fitted by means of regression functions. S–N curves exhibited a smooth transition from the low to the high cycle fatigue regions and significant scattering of experimental points was observed. Furthermore, metallographic and fractographic analyses were performed. Crack initiation occurred from the specimen surface or on clusters of secondary particles; the region of final fracture was characterized by a transgranular ductile fracture.It can be concluded that the fatigue properties of squeeze cast magnesium alloy AZ31 are significantly improved comparing to materials prepared by common methods of casting. Squeeze casting also enables the cost-effective fabrication of complicatedly shaped parts.  相似文献   

12.
在室温条件下,对AZ31镁合金挤压棒材进行循环扭转变形,测试了扭转变形过程的力学性能以及变形后的微观组织和织构特征,并对扭转变形对镁合金棒材的力学性能影响进行了分析。结果表明:镁合金棒材在循环扭转过程中得到了严格对称的应力-应变滞回线,并且随着循环周期的增加,由于加工硬化和内部微裂纹扩展的共同影响,应力-应变滞回线上的应力峰值呈现先增加后减小的特征。在最大扭转角分别为60°和90°条件下,应力峰值出现在第四周期。镁合金棒材扭转变形后的晶粒中出现大量的拉伸孪晶带,孪晶启动使晶粒的 C 轴转向棒材轴线方向。镁合金棒材扭转变形后的力学性能测试结果显示,循环扭转变形明显提高了镁合金棒材压缩变形的屈服强度,其值由扭转前的约100MPa最大提高至约200MPa。  相似文献   

13.
Fatigue Life of the Die‐Cast Magnesium Alloy AZ91: Experiments and Modelling The cyclic deformation behaviour of the die‐cast magnesium alloy AZ91HP was investigated under total strain control at constant total strain amplitudes between 1.4 × 10−3 to 2 × 10−2 at room temperature and at 130°C. Microstructural investigations in combination with the determination of crack‐growth behaviour using the replica technique and measurements of changes of the stiffness (compliance) of the specimen during a fatigue experiment led to a detailed understanding of the evolution of damage and the main damage mechanisms. Based on these findings, a microstructurally based life‐prediction concept was formulated.  相似文献   

14.
In order to study the use of a local approach to predict crack‐initiation life on notches in mechanical components under multiaxial fatigue conditions, the study of the local cyclic elasto‐plastic behaviour and the selection of an appropriate multiaxial fatigue model are essential steps in fatigue‐life prediction. The evolution of stress–strain fields from the initial state to the stabilized state depends on the material type, loading amplitude and loading paths. A series of biaxial tension–compression tests with static or cyclic torsion were carried out on a biaxial servo‐hydraulic testing machine. Specimens were made of an alloy steel 42CrMo4 quenched and tempered. The shear stress relaxations of the cyclic tension–compression with a steady torsion angle were observed for various loading levels. Finite element analyses were used to simulate the cyclic behaviour and good agreement was found. Based on the local stabilized cyclic elastic–plastic stress–strain responses, the strain‐based multiaxial fatigue damage parameters were applied and correlated with the experimentally obtained lives. As a comparison, a stress‐invariant‐based approach with the minimum circumscribed ellipse (MCE) approach for evaluating the effective shear stress amplitude was also applied for fatigue life prediction. The comparison showed that both the equivalent strain range and the stress‐invariant parameter with non‐proportional factors correlated well with the experimental results obtained in this study.  相似文献   

15.
The influence of loading direction on the fatigue behavior of rolled AZ31 alloy was investigated by conducting fully reversed stress-controlled fatigue tests along the rolling direction and normal to the rolling plane. Alternating twinning and detwinning behavior during initial cycling was found to cause asymmetric hysteresis loops, resulting in a compressive strain in the rolling direction and a tensile strain normal to the rolling plane. A transition in the dominant deformation mechanism from twinning–detwinning to slip occurs at around five cycles under both conditions due to cyclic hardening, thus making their loops symmetric. The lower twinning stress in tension along the normal direction leads to an increase in fatigue damage by plastic strain, resulting in a lower fatigue resistance than along the rolling direction.  相似文献   

16.
In the present paper, thermo-mechanical fatigue (TMF) and low cycle fatigue (LCF) or isothermal fatigue (IF) lifetimes of a cast magnesium alloy (the AZ91 alloy) were studied. In addition to a heat treatment process (T6), several rare elements were added to the alloy to improve the material strength in the first step. Then, the cyclic behavior of the AZ91 was investigated. For this objective, strain-controlled tension–compression fatigue tests were carried out. The temperature varied between 50 and 200 °C in the out-of-phase (OP) TMF tests. The constraint factor which was defined as the ratio of the mechanical strain to the thermal strain, was set to 75%, 100% and 125%. For LCF tests, mechanical strain amplitudes of 0.20%, 0.25% and 0.30% were considered at constant temperatures of 25 and 200 °C. Experimental fatigue results showed that the cyclic hardening behavior occurred at the room temperature in the AZ91 alloy. At higher temperatures, this alloy had a brittle fracture. But also, it was not significantly clear that the cyclic hardening or the cyclic softening behavior would be occurred in the material. Then, the high temperature LCF lifetime was more than that at the room temperature. The OP-TMF lifetime was the least value in comparison to that of LCF tests. At the end of this article, two energy-based models were applied to predict the fatigue lifetime of this magnesium alloy.  相似文献   

17.
Cyclic plastic deformation characteristics of 304LN stainless steel material have been studied with two proposed cyclic plasticity models. Model MM-I has been proposed to improve the simulation of ratcheting phenomenon and model MM-II has the capability to simulate both cyclic hardening and softening characteristics of the material at various strain ranges. In the present paper, strain controlled simulations are performed with constant, increasing and decreasing strain amplitudes to verify the influences of loading schemes on cyclic plasticity behaviors through simulations and experiments. It is observed that the material 304LN exhibits non Masing characteristics under cyclic plastic deformation. The measured deviation from Masing is well established from the simulation as well as from experiment. Simulation result shows that the assumption of only isotropic hardening is unable to explain the hardening or softening characteristics of the material in low cycle fatigue test. The introduction of memory stress based cyclic hardening coefficient and an exponentially varying ratcheting parameter in the recall term of kinematic hardening rule, have resulted in exceptional improvement in the ratcheting simulation with the proposed model, MM-II. Plastic energy, shape and size of the hysteresis loops are additionally used to verify the nature of cyclic plasticity deformations. Ratcheting test and simulation have been performed to estimate the accumulated plastic strain with different mean and amplitude stresses. In the proposed model MM-I, a new proposition is incorporated for yield stress variation based on the memory stress of loading history along with the evolution of ratcheting parameter with an exponential function of plastic strain. These formulations lead to better realization of ratcheting rate in the transient cycles for all loading schemes. Effect of mean stress on the plastic energy is examined by the simulation model, MM-I. Finally, the micro structural investigation from transmission electronic microscopy is used to correlate the macroscopic and microscopic non Masing behavior of the material.  相似文献   

18.
16Mn/Zn抗震复合材料的单向拉伸与循环变形行为   总被引:2,自引:0,他引:2  
采用复合铸造工艺将16Mn钢和工业纯锌制备出双金属层状抗震复合材料,并对其在不同条件下的单向拉伸性能和循环变形行为进行了研究.研究表明:在单向拉伸条件下,应变速率对复合材料试样的应力-应变曲线影响不大;在0.5%、1%、1.5%应变下所对应的拉压应力随循环次数的增多而增大,材料出现循环硬化行为,并且循环应变的提高使材料的循环硬化行为逐渐明显,进一步循环使拉压应力趋于稳定;16Mn钢/锌抗震复合材料试件具有滞回特性,使结构适应反复载荷作用下的内力和变形,起到减震的作用.  相似文献   

19.
Magnesium alloys are greatly appreciated due to their high strength to weight ratio, stiffness, and low density; however, they can exhibit complex types of cyclic plasticity like twinning, de‐twinning, or Bauschinger effect. Recent studies indicate that these types of cyclic plastic deformations cannot be fully characterized using the typical tools used in cyclic characterization of steels and aluminium alloys; thus, it is required new approaches to fully capture their cyclic deformation and plasticity. This study aims to propose and evaluate a phenomenological cyclic elastic‐plastic approach designed to capture the cyclic deformation of magnesium alloys under multiaxial loading conditions. Series of experimental tests were performed to characterize the cyclic mechanical behaviour of the magnesium alloy AZ31BF considering proportional loadings with different strain amplitude ratios and a nonproportional loading with a 45° phase shift. The experimental results were modulated using polynomial functions in order to implement a cyclic plasticity model for the AZ311BF based on the phenomenological approach proposed. Results show good correlations between experiments and estimates.  相似文献   

20.
Magnesium – future material for automotive industry? Magnesium alloys show a very high potential in automotive applications as constructive metal, whereas the main focus lies on die cast parts. Electronic industry is the major commercial consumer for die castings besides the automobile industry. Room temperature applications like steering wheels and frame components in cars as well as mobile phone‐ or notebook housings are well established. These castings are produced with AZ‐ or AM‐magnesium alloys, which show good room temperature properties and a good castability. The great alloy development challenge in extending the use of magnesium cast alloys are application for higher temperatures. The application in powertrain components is considered to be the benchmark here. Besides alloy development there are also further research activities in development of casting processes. Semi‐solid processes like New‐Rheocasting (NRC), Thoxomolding ? or Thixocasting (TC) are adapted to the requirements of newly developed alloys. Not only cast alloys but also magnesium wrought alloys have moved to the centre of interest in the last decade. Alloy development for improving the formability on the one hand as well as process development in extrusion or rolling has to be done in order to find optimum parameters for deforming magnesium alloys properly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号