首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Traumatic brain injuries (TBIs) are a significant health problem both in the United States and worldwide with over 27 million cases being reported globally every year. TBIs can vary significantly from a mild TBI with short-term symptoms to a moderate or severe TBI that can result in long-term or life-long detrimental effects. In the case of a moderate to severe TBI, the primary injury causes immediate damage to structural tissue and cellular components. This may be followed by secondary injuries that can be the cause of chronic and debilitating neurodegenerative effects. At present, there are no standard treatments that effectively target the primary or secondary TBI injuries themselves. Current treatment strategies often focus on addressing post-injury symptoms, including the trauma itself as well as the development of cognitive, behavioral, and psychiatric impairment. Additional therapies such as pharmacological, stem cell, and rehabilitative have in some cases shown little to no improvement on their own, but when applied in combination have given encouraging results. In this review, we will abridge and discuss some of the most recent research advances in stem cell therapies, advanced engineered biomaterials used to support stem transplantation, and the role of rehabilitative therapies in TBI treatment. These research examples are intended to form a multi-tiered perspective for stem-cell therapies used to treat TBIs; stem cells and stem cell products to mitigate neuroinflammation and provide neuroprotective effects, biomaterials to support the survival, migration, and integration of transplanted stem cells, and finally rehabilitative therapies to support stem cell integration and compensatory and restorative plasticity.  相似文献   

2.
The incidence of traumatic brain injury (TBI) has increased over the last years with an important impact on public health. Many preclinical and clinical studies identified multiple and heterogeneous TBI-related pathophysiological mechanisms that are responsible for functional, cognitive, and behavioral alterations. Recent evidence has suggested that post-TBI neuroinflammation is responsible for several long-term clinical consequences, including hypopituitarism. This review aims to summarize current evidence on TBI-induced neuroinflammation and its potential role in determining hypothalamic-pituitary dysfunctions.  相似文献   

3.
4.
Traumatic brain injury (TBI) is one of the leading causes of long-term neurological disabilities in the world. TBI is a signature disease for soldiers and veterans, but also affects civilians, including adults and children. Following TBI, the brain resident and immune cells turn into a “reactive” state, characterized by the production of inflammatory mediators that contribute to the development of cognitive deficits. Other injuries to the brain, including radiation exposure, may trigger TBI-like pathology, characterized by inflammation. Currently there are no treatments to prevent or reverse the deleterious consequences of brain trauma. The recognition that TBI predisposes stem cell alterations suggests that stem cell-based therapies stand as a potential treatment for TBI. Here, we discuss the inflamed brain after TBI and radiation injury. We further review the status of stem cells in the inflamed brain and the applications of cell therapy in sequestering inflammation in TBI.  相似文献   

5.
Carvacrol is a monoterpenoid phenol produced by aromatic plants such as oregano. Although the exact mechanism by which carvacrol acts has not yet been established, it appears to inhibit transient receptor potential melastatin 7 (TRPM7), which modulates the homeostasis of metal ions such as zinc and calcium. Several studies have demonstrated that carvacrol has protective effects against zinc neurotoxicity after ischemia and epilepsy. However, to date, no studies have investigated the effect of carvacrol on traumatic brain injury (TBI)-induced zinc neurotoxicity. In the present study, we investigated the therapeutic potential of carvacrol for the prevention of zinc-induced neuronal death after TBI. Rats were subjected to a controlled cortical impact, and carvacrol was injected at a dose of 50 mg/kg. Histological analysis was performed at 12 h, 24 h, and 7 days after TBI. We found that carvacrol reduced TBI-induced TRPM7 over-expression and free zinc accumulation. As a result, subsequent oxidative stress, dendritic damage, and neuronal degeneration were decreased. Moreover, carvacrol not only reduced microglial activation and delayed neuronal death but also improved neurological outcomes after TBI. Taken together, these findings suggest that carvacrol administration may have therapeutic potential after TBI by preventing neuronal death through the inhibition of TRPM7 expression and alleviation of zinc neurotoxicity.  相似文献   

6.
Traumatic brain injury (TBI) represents a major determining factor of outcome in severely injured patients. However, reliable brain-damage-monitoring markers are still missing. We therefore assessed brain-specific beta-synuclein as a novel blood biomarker of synaptic damage and measured the benchmarks neurofilament light chain (NfL), as a neuroaxonal injury marker, and glial fibrillary acidic protein (GFAP), as an astroglial injury marker, in patients after polytrauma with and without TBI. Compared to healthy volunteers, plasma NfL, beta-synuclein, and GFAP were significantly increased after polytrauma. The markers demonstrated highly distinct time courses, with beta-synuclein and GFAP peaking early and NfL concentrations gradually elevating during the 10-day observation period. Correlation analyses revealed a distinct influence of the extent of extracranial hemorrhage and the severity of head injury on biomarker concentrations. A combined analysis of beta-synuclein and GFAP effectively discriminated between polytrauma patients with and without TBI, despite the comparable severity of injury. Furthermore, we found a good predictive performance for fatal outcome by employing the initial plasma concentrations of NfL, beta-synuclein, and GFAP. Our findings suggest a high diagnostic value of neuronal injury markers reflecting distinct aspects of neuronal injury for the diagnosis of TBI in the complex setting of polytrauma, especially in clinical surroundings with limited imaging opportunities.  相似文献   

7.
The use of stem cells for reparative medicine was first proposed more than three decades ago. Hematopoietic stem cells from bone marrow, peripheral blood and human umbilical cord blood (CB) have gained major use for treatment of hematological indications. CB, however, is also a source of cells capable of differentiating into various non-hematopoietic cell types, including neural cells. Several animal model reports have shown that CB cells may be used for treatment of neurological injuries. This review summarizes the information available on the origin of CB-derived neuronal cells and the mechanisms proposed to explain their action. The potential use of stem/progenitor cells for treatment of ischemic brain injuries is discussed. Issues that remain to be resolved at the present stage of preclinical trials are addressed.  相似文献   

8.
Traumatic brain injury is one of the leading causes of mortality and morbidity in the world with no current pharmacological treatment. The role of BDNF in neural repair and regeneration is well established and has also been the focus of TBI research. Here, we review experimental animal models assessing BDNF expression following injury as well as clinical studies in humans including the role of BDNF polymorphism in TBI. There is a large heterogeneity in experimental setups and hence the results with different regional and temporal changes in BDNF expression. Several studies have also assessed different interventions to affect the BDNF expression following injury. Clinical studies highlight the importance of BDNF polymorphism in the outcome and indicate a protective role of BDNF polymorphism following injury. Considering the possibility of affecting the BDNF pathway with available substances, we discuss future studies using transgenic mice as well as iPSC in order to understand the underlying mechanism of BDNF polymorphism in TBI and develop a possible pharmacological treatment.  相似文献   

9.
Neurodegenerative diseases represent a set of pathologies characterized by an irreversible and progressive, and a loss of neuronal cells in specific areas of the brain. Oxidative phosphorylation is a source of energy production by which many cells, such as the neuronal cells, meet their energy needs. Dysregulations of oxidative phosphorylation induce oxidative stress, which plays a key role in the onset of neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). To date, for most neurodegenerative diseases, there are no resolute treatments, but only interventions capable of alleviating the symptoms or slowing the course of the disease. Therefore, effective neuroprotection strategies are needed. In recent years, natural products, such as curcuminoids, have been intensively explored and studied for their therapeutic potentials in several neurodegenerative diseases. Curcuminoids are, nutraceutical compouns, that owen several therapeutic properties such as anti-oxidant, anti-inflammatory and neuroprotective effects. In this context, the aim of this review was to provide an overview of preclinical and clinical evidence aimed to illustrate the antioxidant effects of curcuminoids in neurodegenerative diseases. Promising results from preclinical studies encourage the use of curcuminoids for neurodegeneration prevention and treatment.  相似文献   

10.
Phenoxybenzamine (PBZ) is an FDA approved α-1 adrenergic receptor antagonist that is currently used to treat symptoms of pheochromocytoma. However, it has not been studied as a neuroprotective agent for traumatic brain injury (TBI). While screening neuroprotective candidates, we found that phenoxybenzamine reduced neuronal death in rat hippocampal slice cultures following exposure to oxygen glucose deprivation (OGD). Using this system, we found that phenoxybenzamine reduced neuronal death over a broad dose range (0.1 μM–1 mM) and provided efficacy when delivered up to 16 h post-OGD. We further tested phenoxybenzamine in the rat lateral fluid percussion model of TBI. When administered 8 h after TBI, phenoxybenzamine improved neurological severity scoring and foot fault assessments. At 25 days post injury, phenoxybenzamine treated TBI animals also showed a significant improvement in both learning and memory compared to saline treated controls. We further examined gene expression changes within the cortex following TBI. At 32 h post-TBI phenoxybenzamine treated animals had significantly lower expression of pro-inflammatory signaling proteins CCL2, IL1β, and MyD88, suggesting that phenoxybenzamine may exert a neuroprotective effect by reducing neuroinflammation after TBI. These data suggest that phenonxybenzamine may have application in the treatment of TBI.  相似文献   

11.
Traumatic brain injury (TBI) is associated with significant cognitive and psychiatric conditions. Neuropsychiatric symptoms can persist for years following brain injury, causing major disruptions in patients’ lives. In this review, we examine the role of glutamate as an aftereffect of TBI that contributes to the development of neuropsychiatric conditions. We hypothesize that TBI causes long-term blood–brain barrier (BBB) dysfunction lasting many years and even decades. We propose that dysfunction in the BBB is the central factor that modulates increased glutamate after TBI and ultimately leads to neurodegenerative processes and subsequent manifestation of neuropsychiatric conditions. Here, we have identified factors that determine the upper and lower levels of glutamate concentration in the brain after TBI. Furthermore, we consider treatments of disruptions to BBB integrity, including repairing the BBB and controlling excess glutamate, as potential therapeutic modalities for the treatment of acute and chronic neuropsychiatric conditions and symptoms. By specifically focusing on the BBB, we hypothesize that restoring BBB integrity will alleviate neurotoxicity and related neurological sequelae.  相似文献   

12.
The development of brain metastases in patients with advanced stage melanoma is common, but the molecular mechanisms responsible for their development are poorly understood. Melanoma brain metastases cause significant morbidity and mortality and confer a poor prognosis; traditional therapies including whole brain radiation, stereotactic radiotherapy, or chemotherapy yield only modest increases in overall survival (OS) for these patients. While recently approved therapies have significantly improved OS in melanoma patients, only a small number of studies have investigated their efficacy in patients with brain metastases. Preliminary data suggest that some responses have been observed in intracranial lesions, which has sparked new clinical trials designed to evaluate the efficacy in melanoma patients with brain metastases. Simultaneously, recent advances in our understanding of the mechanisms of melanoma cell dissemination to the brain have revealed novel and potentially therapeutic targets. In this review, we provide an overview of newly discovered mechanisms of melanoma spread to the brain, discuss preclinical models that are being used to further our understanding of this deadly disease and provide an update of the current clinical trials for melanoma patients with brain metastases.  相似文献   

13.
This study aimed to assess the neuro-regenerative properties of co-ultramicronized PEALut (Glialia®), composed of palmitoylethanolamide (PEA) and the flavonoid luteolin (Lut), in an in vivo model of traumatic brain injury (TBI) and patients affected by moderate TBI. An increase in neurogenesis was seen in the mice at 72 h and 7 d after TBI. The co-ultra PEALut treatment helped the neuronal reconstitution process to restore the basal level of both novel and mature neurons; moreover, it induced a significant upregulation of the neurotrophic factors, which ultimately led to progress in terms of memory recall during behavioral testing. Moreover, our preliminary findings in a clinical trial suggested that Glialia® treatment facilitated neural recovery on working memory. Thus, co-ultra PEALut (Glialia®) could represent a valuable therapeutic agent for intensifying the endogenous repair response in order to better treat TBI.  相似文献   

14.
Traumatic brain injury (TBI) is a condition burdened by an extremely high rate of morbidity and mortality and can result in an overall disability rate as high as 50% in affected individuals. Therefore, the importance of identifying clinical prognostic factors for diffuse axonal injury (DAI) in (TBI) is commonly recognized as critical. The aim of the present review paper is to evaluate the most recent contributions from the relevant literature in order to understand how each single prognostic factor determinates the severity of the clinical syndrome associated with DAI. The main clinical factors with an important impact on prognosis in case of DAI are glycemia, early GCS, the peripheral oxygen saturation, blood pressure, and time to recover consciousness. In addition, the severity of the lesion, classified on the ground of the cerebral anatomical structures involved after the trauma, has a strong correlation with survival after DAI. In conclusion, modern findings concerning the role of reactive oxygen species (ROS) and oxidative stress in DAI suggest that biomarkers such as GFAP, pNF-H, NF-L, microtubule associated protein tau, Aβ42, S-100β, NSE, AQP4, Drp-1, and NCX represent a possible critical target for future pharmaceutical treatments to prevent the damages caused by DAI.  相似文献   

15.
Alzheimer’s disease (AD) is the most frequent case of neurodegenerative disease and is becoming a major public health problem all over the world. Many therapeutic strategies have been explored for several decades; however, there is still no curative treatment, and the priority remains prevention. In this review, we present an update on the clinical and physiological phase of the AD spectrum, modifiable and non-modifiable risk factors for AD treatment with a focus on prevention strategies, then research models used in AD, followed by a discussion of treatment limitations. The prevention methods can significantly slow AD evolution and are currently the best strategy possible before the advanced stages of the disease. Indeed, current drug treatments have only symptomatic effects, and disease-modifying treatments are not yet available. Drug delivery to the central nervous system remains a complex process and represents a challenge for developing therapeutic and preventive strategies. Studies are underway to test new techniques to facilitate the bioavailability of molecules to the brain. After a deep study of the literature, we find the use of soft nanoparticles, in particular nanoliposomes and exosomes, as an innovative approach for preventive and therapeutic strategies in reducing the risk of AD and solving problems of brain bioavailability. Studies show the promising role of nanoliposomes and exosomes as smart drug delivery systems able to penetrate the blood–brain barrier and target brain tissues. Finally, the different drug administration techniques for neurological disorders are discussed. One of the promising therapeutic methods is the intranasal administration strategy which should be used for preclinical and clinical studies of neurodegenerative diseases.  相似文献   

16.
Traumatic brain injury (TBI) remains the leading cause of long-term disability, which annually involves millions of individuals. Several studies on mammals reported that neurotrophins could play a significant role in both protection and recovery of function following neurodegenerative diseases such as stroke and TBI. This protective role of neurotrophins after an event of TBI has also been reported in the zebrafish model. Nevertheless, reparative mechanisms in mammalian brain are limited, and newly formed neurons do not survive for a long time. In contrast, the brain of adult fish has high regenerative properties after brain injury. The evident differences in regenerative properties between mammalian and fish brain have been ascribed to remarkable different adult neurogenesis processes. However, it is not clear if the specific role and time point contribution of each neurotrophin and receptor after TBI is conserved during vertebrate evolution. Therefore, in this review, I reported the specific role and time point of intervention for each neurotrophic factor and receptor after an event of TBI in zebrafish and mammals.  相似文献   

17.
A growing body of preclinical evidence indicates that certain cannabinoids, including cannabidiol (CBD) and synthetic derivatives, may play a role in the myelinating processes and are promising small molecules to be developed as drug candidates for management of demyelinating diseases such as multiple sclerosis (MS), stroke and traumatic brain injury (TBI), which are three of the most prevalent demyelinating disorders. Thanks to the properties described for CBD and its interesting profile in humans, both the phytocannabinoid and derivatives could be considered as potential candidates for clinical use. In this review we will summarize current advances in the use of CBD and other cannabinoids as future potential treatments. While new research is accelerating the process for the generation of novel drug candidates and identification of druggable targets, the collaboration of key players such as basic researchers, clinicians and pharmaceutical companies is required to bring novel therapies to the patients.  相似文献   

18.
NX210c is a disease-modifying dodecapeptide derived from the subcommissural organ-spondin that is under preclinical and clinical development for the treatment of neurological disorders. Here, using whole-cell patch-clamp recordings, we demonstrate that NX210c increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)- and GluN2A-containing N-methyl-D-aspartate receptor (GluN2A-NMDAR)-mediated excitatory postsynaptic currents in the brain. Accordingly, using extracellular field excitatory postsynaptic potential recordings, an enhancement of synaptic transmission was shown in the presence of NX210c in two different neuronal circuits. Furthermore, the modulation of synaptic transmission and GluN2A-NMDAR-driven signaling by NX210c restored memory in mice chronically treated with the NMDAR antagonist phencyclidine. Overall, by promoting glutamatergic receptor-related neurotransmission and signaling, NX210c represents an innovative therapeutic opportunity for patients suffering from CNS disorders, injuries, and states with crippling synaptic dysfunctions.  相似文献   

19.
Perinatal hypoxia-ischemia (HI) is a major cause of brain injury and mortality in neonates. Hypoxic-ischemic encephalopathy (HIE) predisposes infants to long-term cognitive deficits that influence their quality of life and place a large burden on society. The only approved treatment to protect the brain after HI is therapeutic hypothermia, which has limited effectiveness, a narrow therapeutic time window, and is not considered safe for treatment of premature infants. Alternative or adjunctive therapies are needed to improve outcomes of full-term and premature infants after exposure to HI. Inter-alpha inhibitor proteins (IAIPs) are immunomodulatory molecules that are proposed to limit the progression of neonatal inflammatory conditions, such as sepsis. Inflammation exacerbates neonatal HIE and suggests that IAIPs could attenuate HI-related brain injury and improve cognitive outcomes associated with HIE. Recent studies have shown that intraperitoneal treatment with IAIPs can decrease neuronal and non-neuronal cell death, attenuate glial responses and leukocyte invasion, and provide long-term behavioral benefits in neonatal rat models of HI-related brain injury. The present review summarizes these findings and outlines the remaining experimental analyses necessary to determine the clinical applicability of this promising neuroprotective treatment for neonatal HI-related brain injury.  相似文献   

20.
Traumatic brain injury (TBI) induces secondary biochemical changes that contribute to delayed neuroinflammation, neuronal cell death, and neurological dysfunction. Attenuating such secondary injury has provided the conceptual basis for neuroprotective treatments. Despite strong experimental data, more than 30 clinical trials of neuroprotection in TBI patients have failed. In part, these failures likely reflect methodological differences between the clinical and animal studies, as well as inadequate pre-clinical evaluation and/or trial design problems. However, recent changes in experimental approach and advances in clinical trial methodology have raised the potential for successful clinical translation. Here we critically analyze the current limitations and translational opportunities for developing successful neuroprotective therapies for TBI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号