首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
进行了细晶ZrO2陶瓷二维超声振动磨削表面微观特征试验研究.应用原子力显微镜和扫描电镜分析了磨削表面微观特性.试验结果表明:同样磨削条件下,二维超声振动磨削表面峰谷较均匀,磨削表面均匀一致性优于普通磨削表面,二维超声振动磨削更易于实现塑性域磨削.分析表明:二维超声振动磨削单颗磨粒的切削运动轨迹状态和单颗磨粒与工件的接触状态是影响二维超声振动磨削表面质量的主要因素.磨削表面粗糙度实验表明:相同磨削条件下,材料的力学性能也是影响陶瓷磨削表面质量的重要因素之一.  相似文献   

2.
为了模拟单颗粒金刚石磨削碳化硅陶瓷的加工过程,采用控制单一变量的方法,设置同一条件下不同工件进给速度的工艺参数,用Johnson-Holmquist ceramic本构关系建立有限元模型,仿真分析不同工件进给速度下单粒金刚石磨削碳化硅陶瓷的磨削力、磨削表面应力、磨削表面形貌和裂纹损伤.仿真模型数据与已有相同工况下的单粒金刚石磨削碳化硅陶瓷实验值吻合度较高,所提出的数值模型为金刚石砂轮设计、预测陶瓷磨削的磨削力、切屑去除和观察划痕形貌提供了高效的方法和理论依据.  相似文献   

3.
微-纳米复合陶瓷超声振动磨削的塑性-脆性 转变特征研究   总被引:1,自引:0,他引:1  
基于工件超声振动磨削的单磨粒运动模型,建立超声振动磨削单磨粒最大切削厚度agm ax公式;基于压痕断裂力学,给出硬脆材料超声振动磨削塑性-脆性转变临界条件,进行超声振动磨削与普通磨削对比试验,应用SEM和AFM分析陶瓷磨削表面微观形貌特征,重点研究磨削参数对其塑性-脆性转变特征的影响。研究结果表明,砂轮平均磨粒尺寸是影响塑性-脆性转变最为主要的因素,砂轮速度对其影响次之,磨削深度对塑性-脆性转变的影响最小;得出只有当agm ax小于临界切削深度agc时,才能实现硬脆材料塑性域磨削的重要结论。  相似文献   

4.
为控制单晶涡轮叶片榫齿缓进磨削成形表面质量,通过实验研究缓进磨削工艺参数对DD5镍基单晶高温合金磨削表面完整性的影响规律。实验结果表明,当砂轮线速度在15~30 m/s、工件进给速度在120~210 mm/min、磨削深度在0.1~0.7 mm参数范围内,磨削表面垂直磨削方向粗糙度在0.56~0.74μm范围内,沿磨削方向粗糙度约为垂直磨削方向粗糙度的1/5。三维形貌和表面纹理测试结果表明磨削表面存在明显的因磨粒耕犁和划擦而产生的表面凹槽和材料隆起现象,不同工艺参数下磨削表面凹槽和隆起材料的长度和高度有较明显变化;砂轮线速度对沿磨削方向凹槽和隆起长度影响较敏感;磨削深度和工件进给速度对垂直磨削方向的凹槽和隆起轮廓起伏程度敏感。磨削表面出现了不同程度加工硬化,最高达11.6%,最大硬化层深度达到110μm;磨削表面层出现明显塑性变形,γ相沿着磨削方向出现不同程度的滑移变形,立方化的γ′相出现了偏移、扭曲、破碎断裂现象,最大塑性变形层厚度为2.92μm; DD5缓进磨削塑性变形是加工硬化产生主要原因。实验结果对DD5榫齿磨削提供理论指导。  相似文献   

5.
为了探讨超声振动对普通磨削过程的影响,采取单颗磨粒磨削试验方法,在对普通和超声辅助单颗磨粒高速磨削的表面形貌特征(切削沟槽宽度、磨削轨迹干涉)进行理论分析的基础上,对相应理论进行试验验证和分析研究,同时还对超声辅助条件下基于磨削力信号的磨粒磨损进行了分析。结果表明:与普通磨削相比,在超声振动条件下,单颗磨粒高速磨削具有磨削轨迹干涉、切削沟槽宽等特点;不同的磨削力信号特征反映了不同形式的磨粒磨损。研究结果为磨削加工过程中的实时监测提供了一定的判定依据,也为以后整个砂轮的试验研究提供了理论和技术支持。  相似文献   

6.
风电叶片的表面处理是其制造过程中的重要步骤。磨削力是影响表面质量、打磨效率和磨削温度的主要因素,目前普通砂轮磨削力在理论和实验上都得到很大的发展。针对基于风电叶片表面处理的杯型砂轮磨削理论模型研究,利用未变形临界磨削深度分析材料的去除方式,提出了一种杯型砂轮高速精磨的磨削机理。通过运动学分析提出了打磨的未变形接触长度,并根据实验测得有效磨粒数推导瞬时打磨深度,利用正态函数得到的活动磨粒数建立了揭示磨削力与输入变量之间关系的磨削力模型。实验结果有力地证明了磨削力模型的正确性。表明了理论力模型可以用于估计磨削力,提高表面质量和打磨效率,对工程实践选择合理的打磨参数具有指导意义。  相似文献   

7.
影响氮化硅陶瓷内圆磨削加工表面形貌因素分析   总被引:1,自引:0,他引:1  
目的研究氮化硅陶瓷在内圆磨削时不同的磨削参数:砂轮线速度(vs)、径向进给速度(f)、轴向振荡速度(fa)对表面粗糙度的影响.方法采用树脂结合剂金刚石砂轮对氮化硅陶瓷试件进行内圆加工实验,进行了3因素的均匀实验.建立了氮化硅陶瓷内圆磨削的经验公式,利用Taylor-Hobson Surtroni25型接触式粗糙度仪对加工表面进行测量,得到不同磨削参数下的粗糙度;用日立S-4800冷场发射电子显微镜对加工表面进行观测,得到被磨试件的表面形貌图像.结果加工表面粗糙度随砂轮线速度的增大而减小,随径向进给速度的增大而增大,随轴向振荡速度的增大而减小.砂轮线速度对被加工表面粗糙度影响最大,随着砂轮速度的增大,粗糙度由0.340 1μm下降到0.295 0μm.结论明确了内圆磨削氮化硅陶瓷试件时不同磨削参数对表面粗糙度的影响,通过回归分析,探索出了不同线速度下氮化硅陶瓷材料去除机理对其表面形貌产生的影响.  相似文献   

8.
陶瓷结合剂CBN砂轮磨削难加工材料时磨削液的作用   总被引:4,自引:0,他引:4  
通过对单颗CBN磨粒和普通磨粒磨损特性的比较以及对陶瓷结合剂CBN砂轮磨损特性和磨削性能的分析,研究了CBN砂轮磨削难加工材料时磨削液的作用,提出了陶瓷结合剂CBN砂轮磨削液的选择依据,研究结果表明,CBN磨粒粘附后所承受的磨削力增大,由此所造成CBN砂轮磨粒和结合剂破碎是不利于发挥CBN砂轮的优异性能的主要因素,磨削液应以抑制粘附,减少摩擦的润滑作用为主,与水基磨削液相比,磨削不同的难加工材料时选用极压磨削油可减少磨削力20-50%,降低磨削温度70-200度,提高磨削比3-30倍。  相似文献   

9.
针对高体积分数SiCp/Al复合材料的加工难题,采用在线电解修整精密磨削加工工艺对其进行精密磨削实验研究.首先,通过建立单颗粒磨削模型,得到磨粒的最大变形磨屑厚度,进而利用Matlab软件,得到SiCp/Al复合材料塑性域磨削的试验参数范围.然后,通过单因素试验探究磨削深度、砂轮转速以及工件移动速度对加工表面粗糙度的影响,利用正交试验最优参数与理论分析得到的塑性域磨削的试验参数范围进行对比,确定了最优工艺参数.最后,以最优试验参数对体积分数40%的SiCp/Al复合材料进行精密磨削加工,获得表面粗糙度Ra 0.030μm的加工表面.研究表明:应用ELID精密磨削加工工艺,采用W5铸铁基金刚石砂轮,当砂轮转速为1 500 r/min,磨削深度在0.1μm,工件移动速度为2 m/min时,磨削效果最佳.  相似文献   

10.
为探讨磨粒簇叶序砂轮磨削平面结构化表面的形成机制,从磨削几何学出发,设计磨粒簇叶序排布砂轮并建立数学模型,推导出磨粒的运动方程,并研究实现结构化表面的磨削条件;利用Matlab对磨削过程进行仿真,分析不同参数下工件结构化表面的形貌特征。结果表明,通过改变磨削参数和砂轮磨粒簇形状可以获得凹坑、凸包和沟槽三种典型的结构化表面,其中叶序系数、磨削深度及工件进给速度与砂轮转速比是主要的影响因子。  相似文献   

11.
针对锆刚玉磨料砂带和近α钛合金工件材料的特点,通过三维体式显微镜对锆刚玉磨料砂带干式磨削近α钛合金时的磨粒磨损面积、磨粒高度、磨损量和金属去除量进行了研究;同时采用扫描电子显微镜和能量分散光谱扫描对磨粒磨损形态进行研究;并分析不同磨粒磨损阶段对磨削工件表面的影响。研究表明:磨粒磨损形态有脱落,磨耗和破碎,主要以磨耗磨损为主;砂带线速度vs、进给速度vw和磨削深度ap增大均使砂带磨粒磨损加剧。在低切削速度、低进给量、低切削深度下锆刚玉磨料砂带加工钛合金时的切削加工性最好,因此锆刚玉磨料砂带适用于钛合金的干式磨削加工。  相似文献   

12.
金刚石和CBN超高速冲击磨削Q235A实验研究   总被引:2,自引:1,他引:2  
为研究Q2 35A钢在超高速磨削条件下的磨屑形成机理,使用真实的人造金刚石和CBN颗粒作为磨料,将其粘接在7.6 2mm的子弹头部,利用81式步枪作为加速、加载装置,对Q2 35A钢进行了72 0m/s的超高速冲击磨削实验研究。对实验结果进行了深入、细致的检测和分析。实验结果表明,Q2 35A在超高速冲击作用下,弹着点会产生瞬间高温,达到或超过Q2 35A的熔点,从而在子弹与钢板相接触区域的材料形成流动相,流动物质在磨粒和冲击波的作用下离开基体而形成磨屑。验证了冲击成屑理论的正确性。  相似文献   

13.
主要研究陶瓷磨削力对残余应力和表面性能的影响。结果表明 :陶瓷磨削力主要是法向磨削力对残余应力的方向、作用深度、变化梯度均有较大的影响。在小切深、反复光磨的条件下 ,磨削力使残余应力的数值、变化梯度减小 ,作用深度增大。一般情况下 ,在磨削力作用下的残余压应力的作用深度随磨削条件而变化 ,一般小于 12 μm。残余压应力作用在塑性变形层内。  相似文献   

14.
目的研究不同工况下,各种磨削参数组合对比磨削能的综合影响.方法利用Kislter旋转测力仪在线测量切向磨削力,采用正交实验方法设定影响比磨削能的磨床各项磨削参数.通过比磨削能经验公式计算出相应的比磨削能.结果得到不同工况下花岗岩内圆磨削的比磨削能.通过对实验数据的处理得到花岗岩的比磨削能在15~40 J/mm^3.与最小比磨削能0.669J/mm^3对应的因素分别为:砂轮粒度80^#、砂轮转速8.64 m/s、工件转速0.92 m/s.结论揭示了金属材料与硬脆材料去除方式的本质差别,对花岗岩比磨削能的影响因素主次顺序为:切削深度〉砂轮粒度〉砂轮转速〉工件转速.可知影响花岗岩比磨削能的内在因素为材料去除方式,得到了花岗岩内圆磨削的比磨削能的最佳工艺参数组合.  相似文献   

15.
The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayleigh distribution and a mathematical model of friction based on the theoretical analysis of relative sliding velocity of abrasive and workpiece. Then, the coefficients of the ultrasonic vibration grinding force model are calculated through analysis of nonlinear regression of the theoretical model by using MATLAB, and the law of influence of grinding depth, workpiece speed, frequency and amplitude of the mill on the grinding force is summarized after applying the model to analyze the ultrasonic grinding force. The result of the above-mentioned law shows that the grinding force decreases as frequency and amplitude increase, while increases as grinding depth and workpiece speed increase; the maximum relative error of prediction and experimental values of the normal grinding force is 11.47% and its average relative error is 5.41%; the maximum relative error of the tangential grinding force is 10.14% and its average relative error is 4.29%. The result of employing regression equation to predict ultrasonic grinding force approximates to the experimental data, therefore the accuracy and reliability of the model is verified.  相似文献   

16.
本文从岩石的裂纹扩展特性、材料强度特性及压头点载荷侵入破岩特性等方面入手,对单颗粒的切削力进行了深入分析,得出单颗粒切削深度是影响锯切力的主要因素的结论.通过对单颗粒切削深度影响因素的讨论,得出锯切条件及工艺参数与锯切力的关系结论:锯切力将随落锯速度的增大而增大,随锯切速度的增大而减小.锯切力实验结果与理论分析结果相一致.研究结果可为锯切机理的进一步研究及设备与工艺的改进提供理论依据.  相似文献   

17.
目的 研究高速磨削试验下砂轮粒度、砂轮速度、磨削深度、工件速度等工艺参数对工程陶瓷材料磨削表面粗糙度的影响.方法 利用MK2710型数控内外圆复合磨床对工程陶瓷内表面进行磨削加工,并利用Surtronic 25接触式粗糙度测量仪进行表面粗糙度的测量,得到不同磨削工艺参数下的表面质量.结果 单一因素试验分析得出表面粗糙度随着砂轮粒度的变小而降低,随着砂轮线速度增加而降低,随着工件转速的增大而减小,随着磨削深度的增大而增大;通过正交试验的分析得出,与工程陶瓷表面粗糙度关系最大的为砂轮粒度,其次为砂轮速度和磨削深度,工件速度影响最小.结论 揭示了砂轮粒度、砂轮速度、磨削深度、工件速度对工程陶瓷表面粗糙度的不同影响,确定了最佳磨削工艺,并且进行试验验证,为工程陶瓷材料磨削加工提供了依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号