首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of our study was to analyze the proteomic pattern of human macrophages obtained over a 4 year period from blood donors. The purpose was to simulate a long-term clinical study to assess the application of 2-D DIGE technique for differential proteomic analysis of these scarce samples. Bioinformatic analysis of 2-D DIGE gels of 19 different cultures of macrophages assessed whether they did or did not contain at least specific five spots identified by MS as being or containing bovine deoxyribonuclease I (DNase I). Bovine DNase I was used during sample treatment to remove nucleic acids from protein extracts. Macrophages were classified in two groups, which appeared to be differentiated by the completeness of DNase I treatment. Further detailed analysis revealed a different proteomic pattern of macrophage protein samples according to the completeness of this treatment. The major group of proteins affected, accounting for one third of the differentially expressed proteins, included proteins involved in cell motion and actin cytoskeleton reorganization. The use of DNase I for the removal of nucleic acids from protein samples must be avoided in proteomic studies since it can generate bias in the analysis of protein expression patterns.  相似文献   

2.
Adequate kidney function is crucial in sustaining vertebrate homeostasis. Certain diseases can diminish renal function and lead to end-stage renal disease. Diabetes mellitus and hypertension are the main causes of glomerulosclerosis and albuminuria in adults. The molecular mechanisms that trigger these maladaptive changes are still unsatisfyingly described. We previously introduced 2-D DIGE in combination with focused tissue isolation methods to analyze protein expression in glomeruli. Glomeruli, the crucial compartments in albuminuric renal diseases, were extracted using magnetic particles from subtotally nephrectomized FVB mice (n?=?6); this 5/6 nephrectomy in FVB mice is a model of chronic kidney disease. Analysis of protein expression levels from glomerular protein lysates was performed using 2-D DIGE and compared with glomerular protein lysates from mice that underwent sham surgery. The comparison of about 2100 detectable spots between both groups revealed 48 protein spots that showed significant differential expression. Of those, 33 proteins could be identified using nanoLC-ESI MS. The metalloproteinase meprin 1 alpha, the beta galactoside-binding-lectin galectin-1 and dimethylarginine dimethylaminohydrolase 1, a key enzyme in NO metabolism, were found to be differentially regulated, thus implying a role in the pathogenesis and pathophysiology of progressive kidney disease. In conclusion, 2-D DIGE protein analysis of smallest sample sizes from specific organ compartments provides focused protein expression results, which help in gaining an understanding of the molecular mechanisms of chronic kidney disease.  相似文献   

3.
Pancreatic cancer is a highly lethal disease that is difficult to diagnose at early stage and even more difficult to cure. SW1990 and PANC-1 represent the two cancer cell lines, which are both derived from pancreatic duct, but at different cell differentiation stages. In this study, we applied the iTRAQ-labeling technology and 2-D strong cation exchange/reversed phase liquid chromatography – LC-MS/MS) to profile the secreted proteins of SW1990 and PANC-1 cells in a conditioned cell culture medium. A total of 401 proteins were identified by MS/MS and protein database searching, the percentages of these proteins predicted in the categories of plasma membrane, intracellular and secreted proteins were 29.2, 32.7 and 38.2%, respectively. Fifty six proteins were identified with unknown functions and 19 proteins were quantified with significant level changes between the two cancer cell lines under the specific cell condition with 12 proteins being up-regulated (>1.3-fold change) in PANC-1 (e.g. FLJ31222 protein, 97 kDa protein, type IV collagenase precursor, 38 kDa protein and centaurin) and seven proteins being up-regulated in SW1990 (e.g. fibroblast growth factor receptor substrate 2, putative p150, hypothetical protein LOC 654463 and LOC 55701). The proteins with significant level changes may provide a baseline to investigate mechanisms underlying the differentiation of two cell lines and can be further screened for better protein biomarkers in pancreatic cancer.  相似文献   

4.
Difference gel electrophoresis enables the accurate quantification of changes in the proteome including combinations of PTMs and protein isoform expression. Here, we review recent advances in study design, image acquisition, and statistical analysis. We also compare DIGE to established and emerging mass spectrometric analysis technologies. Despite these recent advances in MS and the still unsolved limitations of 2DE to map hydrophobic, high molecular weight proteins with extreme pIs, DIGE remains the most comprehensive top-down method to study changes in abundance of intact proteins.  相似文献   

5.
The formation and progression of atherosclerotic lesions involve complex mechanisms which are still not fully understood. A variety of cell types from the distinct arterial layers are implicated in the whole process from lipid accumulation within the vascular wall to plaque development and final rupture. In the present work, we employ the combination of laser microdissection and pressure catapulting and 2-D DIGE saturation labeling to investigate the human intima and media sub-proteomes isolated from atherosclerotic (coronary and aorta) or non-atherosclerotic vessels (preatherosclerotic coronary arteries). Laser microdissection and pressure catapulting allows the specific isolation of regions of interest. In turn, DIGE saturation labeling overcomes the limitation of extensive microdissection times to recover the protein amount required to perform comparative 2-DE, particularly when dealing with tissue regions rich in myofilament proteins, which result in low protein recovery. The compatibility and optimum performance of both techniques were investigated in detail, paying special attention to tissue staining and protein solubilization. Since scarce amount of protein obtained from microdissected tissue made it impossible to directly perform protein identification from 2-DE spots by MS, we performed in-solution digestion followed by LC-MS/MS analysis of total protein extracts from intima and media in order to get an overall picture of protein composition. Proteins so identified confirm the nature of the isolated regions. Finally, similar spot resolution on 2-D DIGE gels was obtained for the different human artery types (coronary, aorta) and studied layers (intima, media), setting the basis for future clinical comparative studies.  相似文献   

6.
Gliomas are highly heterogeneous and therapy resistant tumors with a poor prognosis. Novel experimental therapeutic approaches have shown some promising results, but often target specific molecular mechanisms or antigens, and careful characterization of the molecular subgroup of the tumors will therefore likely be important. Thorough investigations of gene and protein alterations are also important to better understand the tumorigenic mechanisms. We have undertaken a proteomic approach, using 2-D DIGE and LC-MS/MS protein identification, to investigate 38 human gliomas and normal brains. We show that the proteome profile can discriminate between normal brain and tumors, and between tumors of varying grade by a supervised classifier. Furthermore, an analysis of the identified proteins shows an enrichment of proteins associated to pathways known to be central in gliomas, such as MEK/Erk signaling and actin cytoskeleton. It also shows a shift between different glial fibrillary acidic protein (GFAP) representatives in different grades. In a previous study the gene expression profile was characterized in an almost identical set of tumors, which enabled a paired analysis of the gene and protein expression profiles. We show that there is often a weak correlation between the mRNA and protein level. This, together with the ability of proteomics to identify PTMs, emphasizes the benefit of characterization on a protein level.  相似文献   

7.
Purpose: As a pre‐malignant precursor, adenoma provides an ideal tissue for proteome profiling to investigate early colorectal cancer development and provide possible targets for preventive interventions. The aim of this study was to identify patterns of differential protein expression that distinguish colorectal adenoma from normal tissue. Experimental design: Twenty paired samples of adenoma and normal mucosa were analysed by 2‐DE and MALDI‐TOF/TOF MS to detect proteins with ≥2‐fold differential expression. Results: Four proteins were up‐regulated in adenoma (Annexin A3, S100A11, S100P and eIF5A‐1) and three were down‐regulated (Galectin‐1, S100A9 and FABPL). S100P, galectin‐1, S100A9 and FABPL expression was localised by immunohistochemistry. Conclusions and clinical relevance: Distinctive patterns of in vivo protein expression in colorectal adenoma were identified for the first time. These proteins have important functions in cell differentiation, proliferation and metabolism, and may play a crucial role in early colorectal carcinogenesis. The ability to recognise premalignant lesions may have important applications in cancer prevention.  相似文献   

8.
Colorectal cancer (CRC) is a widespread disease, whose major genetic changes and mutations have been well characterized in the sporadic form. Much less is known at the protein and proteome level. Still, CRC has been the subject of multiple proteomic studies due to the urgent necessity of finding clinically relevant markers and to elucidate the molecular mechanisms underlying the progression of the disease. These proteomic approaches have been limited by different technical issues, mainly related with sensitivity and reproducibility. However, recent advances in proteomic techniques and MS systems have rekindled the quest for new biomarkers in CRC and an improved molecular characterization. In this review, we will discuss the application of different proteomic approaches to the identification of differentially expressed proteins in CRC. In particular, we will make a critical assessment about the use of 2-D DIGE, MS and protein microarray technologies, in their different formats, to identify up- or downregulated proteins and/or autoantibodies profiles that could be useful for CRC characterization and diagnosis. Despite a wide list of potential biomarkers, it is clear that more scientific efforts and technical advances are still needed to cover the range of low-abundant proteins, which may play a key role in CRC diagnostics and progression.  相似文献   

9.
The aim of this study was to characterize the proteome of normal and malignant colonic tissue. We previously studied the colon proteome using 2‐DE and MALDI‐MS and identified 734 proteins (Roeßler, M., Rollinger, W., Palme S., Hagmann, M.‐L., et al.., Clin. Cancer Res. 2005, 11, 6550–6557). Here we report the identification of additional colon proteins from the same set of tissue samples using a complementary nano‐flow 2‐D‐LC‐ESI‐MS. In total, 484 proteins were identified in colon. Of these, 252 had also been identified by the 2‐DE/MALDI‐MS approach, whereas 232 proteins were unique to the 2‐D‐LC‐ESI‐MS analysis. Comparing protein expression in neoplastic and normal colon tissue indicated elevated expression of several proteins in colorectal cancer, among them the well established tumor marker carcinoembryonic antigen, as well as calnexin, 40S ribosomal protein S15a, serpin H1, and S100A12. Overexpression of these proteins was confirmed by immunoblotting. Serum levels of S100A12 were determined by ELISA and were found to be strongly elevated in colorectal cancer patients compared to healthy individuals. We conclude, that 2‐D‐LC‐ESI‐MS is a powerful approach to identify and compare protein profiles of tissue samples, that it is complementary to 2‐DE/MALDI‐MS approaches and has the potential to identify novel biomarkers.  相似文献   

10.
We performed 2-D DIGE on proteins prepared from serum obtained from patients with osteosarcoma (OS) and controls, to identify differentially expressed proteins that might serve as serum biomarkers for OS prognosis. Proteins found to be differentially expressed were identified by MALDI-TOF mass spectrometric analysis, coupled with database interrogation. We compared serum samples from four individuals with OS to four age- and sex-matched healthy controls. We identified 24 protein spot-features that were significantly increased, and 34 that were significantly decreased in serum from patients with OS relative to the controls. The MS analysis revealed 18 unique proteins that were increased, and 25 unique proteins that were decreased in OS serum samples. Western blot and ELISA analysis confirmed increased levels of amyloid-related serum protein (SAA) in the OS serum samples. The increased expression levels of SAA were decreased after using MTX and cisplatin combination chemotherapy, and were further decreased after operation. Moreover, increased expression levels of sera SAA were seen in the relapsed patients. Our results suggested that the determination of serum SAA in OS patients might be utilized as a marker for relapse and in evaluation of the efficacy of therapy.  相似文献   

11.
Pancreatic ductal adenocarcinoma (PDAC) accounts for over 213?000 deaths worldwide each year, largely due to late diagnosis. One of the risk factors for the development of PDAC is chronic pancreatitis (CP); the intense desmoplastic reaction makes differentiation between the two conditions extremely difficult. In order to identify biomarkers for noninvasive diagnosis, we performed 2-D DIGE analysis of urine samples from healthy individuals and patients with PDAC and CP. Despite considerable intersample heterogeneity, a total of 127 statistically valid (p<0.05), differentially expressed protein spots were detected, 101 of which were identified using MALDI-TOF MS. A number of these, including annexin A2, gelsolin and CD59 have already been associated with PDAC, however, their validation using immunoblotting proved challenging. This is probably due to extensive PTMs and processing thus indicating the need for raising specific antibodies for urinary proteins. Despite this, our study clearly demonstrates that urine is a valid source of noninvasive biomarkers in patients with pancreatic diseases.  相似文献   

12.
Our knowledge of the complex bronchoalveolar lavage fluid (BALF) proteome has increased significantly over the last decade; but still, there remain many aspects of the BALF proteome that need characterization. Current proteomic methodologies resolve proteins within limited dynamic ranges: thereby, being limited in their ability to examine important areas of the BALF proteome, such as low molecular weight, low abundance proteins. To ensure proper coverage of these proteins in the BALF proteome, a refined 2-DE standard operation protocol is presented, highlighting important issues in sample collection, sample preparation, and 2-D DIGE analysis. It is hoped that this will help advance the field of BALF proteomics, BALFomics, which has lagged behind similar biofluids such as plasma and serum.  相似文献   

13.
The pathology of Alzheimer's disease (AD) begins years prior to clinical diagnosis. The development of antecedent biomarkers that indicate the presence of AD pathology and predict risk for decline in both cognitively normal and mildly impaired individuals will be useful as effective therapies are developed. While cerebrospinal fluid (CSF) markers such as amyloid-β (Aβ) 42 and tau are useful, additional biomarkers are needed. To identify new markers, we utilized 2-D difference gel electrophoresis (2-D DIGE) of individual CSF samples from subjects with very mild AD versus controls after depletion of high-abundant proteins. Protein spots displaying differential abundance between the two groups were identified with MS. A number of candidate biomarkers were identified in 18 gel features. Selected candidates were quantified in a larger clinical set using ELISA. The mean levels of α1-antichymotrypsin (ACT), antithrombin III (ATIII), and zinc-α2-glycoprotein (ZAG) were significantly higher in the mild AD group, and the mean level of carnosinase 1 (CNDP1) was decreased. When these biomarkers are optimally combined, there is a strong trend toward greater specificity and sensitivity based on clinical diagnosis than when used individually. Our findings provide novel biomarker candidates for very mild and mild AD that can be further assessed as antecedent markers and predictors of clinical progression.  相似文献   

14.
Elucidating the molecular mechanism underlying the development of adenoma, the major precursor lesion of colorectal cancer (CRC), would provide a basis for early detection, prevention as well as treatment of CRC. Using the highly sensitive 2-D DIGE method coupled with MS, we identified 24 differentially expressed proteins in adenoma tissues compared with matched normal colonic mucosa and CRC tissues. Fifteen proteins were downregulated and three proteins were upregulated in adenoma tissues when compared with individual-matched normal colonic mucosa. Five proteins were downregulated, while one protein was upregulated in adenoma tissues when compared with matched CRC tissues. A protein, β-tropomyosin (TM-β), recently suggested to be a biomarker of esophageal squamous carcinoma, was downregulated in both adenoma and CRC tissues. Additionally, the reduction in the level of TM-β in adenoma and CRC tissues was further validated by Western blotting (p<0.05) and RT-PCR (p<0.001). Our findings suggest that downregulation of TM-β is involved in the early development of CRC and that differentially expressed proteins might serve as potential biomarkers for detection of CRC.  相似文献   

15.
The aim of this study has been designed to identify the tuberculosis (TB)-related proteins in pericardial effusion by proteomic approaches. TB is one of the major infectious diseases causing pericardial effusion. This study details protein profiles in pericardial effusion from three TB patients and three heart failure patients. Pericardial effusions were analyzed using 2-DE combined with the nano-HPLC-ESI-MS/MS. Eleven protein spots with differential expression in pericardial effusion were identified between the two groups of TB and heart failure patients (the control group). Seven protein spots were upregulated and four were downregulated. The composition of the pericardial effusion proteome may reflect the pathophysiological conditions affecting the progression of tuberculous pericarditis. The proteins in the tuberculous pericardial effusion with differential expression may serve as new and direct indicators of drug treatment. A possible conclusion is indicated that fibrinogen may play an important role for fibrin assembly in tuberculous pericardial effusion.  相似文献   

16.
Purpose : We aimed to identify novel chemotherapy responsiveness biomarkers for osteosarcoma (OS) by investigating the global protein expression profile of 12 biopsy samples from OS patients. Experimental design : Six patients were classified as good responders and six as poor responders, according to the Huvos grading system. The protein expression profiles obtained by 2‐D DIGE consisted of 2250 protein spots. Results : Among them, we identified 55 protein spots whose intensity was significantly different (Bonferroni adjusted p‐value<0.01) between the two patient groups. Mass spectrometric protein identification demonstrated that the 55 spots corresponded to 38 distinct gene products including peroxiredoxin 2 (PRDX 2). Use of a specific antibody against PRDX 2 confirmed the differential expression of PRDX 2 between good and poor responders, while PRDX 2 levels as measured by Western blotting correlated highly with their corresponding 2‐D DIGE values. The predictive value of PRDX 2 expression was further confirmed by examining an additional four OS cases using Western blotting. Conclusions and clinical relevance : These results establish PRDX 2 as a candidate for chemotherapy responsiveness marker in OS. Measuring PRDX 2 in biopsy samples before treatment may contribute to more effective management of OS.  相似文献   

17.
Urinary proteomics has become one of the most attractive subdisciplines in clinical proteomics as the urine is an ideal source for the discovery of noninvasive biomarkers for kidney and nonkidney diseases. This field has been growing rapidly as indicated by >80 original research articles on urinary proteome analyses appearing since 2001, of which 28 (approximately 1/3) had been published within the year 2006. The most common technologies used in recent urinary proteome studies remain gel-based methods (1-DE, 2-DE and 2-D DIGE), whereas LC-MS/MS, SELDI-TOF MS, and CE-MS are other commonly used techniques. In addition, mass spectrometric immunoassay (MSIA) and array technology have also been applied. This review provides an extensive but concise summary of recent applications of urinary proteomics. Proteomic analyses of dialysate and ultrafiltrate fluids derived from renal replacement therapy (or artificial kidney) are also discussed.  相似文献   

18.
Purpose: To exploit the potential of proteomics to identify and study additional yet‐unidentified important proteins present in human endometrium. Experimental design: The proteome of human endometrium would be established using 2‐DE and MALDI and the data analyzed to identify differential protein expression in the proliferative and secretory phase of the menstrual cycle using PDQuest software and MALDI. Results: In the present work, 2‐DE of human endometrium protein led to the resolution of over 200 spots. Subsequent MALDI analysis of 215 spots allowed the identification of 194 proteins. A total of 57 out of the 215 spots were found to be differentially expressed, out of which 49 could be identified using MALDI. These differentially expressed proteins included structural proteins, molecular chaperones, signaling proteins, metabolic proteins, proteins related to immunity, RNA biogenesis, protein biosynthesis and others. The differential expressions of seven representative proteins in secretory and proliferative phase endometrium tissue were confirmed by immunoblot analysis. Conclusion and clinical relevance: This study establishes the 2‐D proteome of human endometrium represented by 194 identified protein spots. The present data provides an important clue towards determining the function of these proteins with respect to endometrium related diseases.  相似文献   

19.
The testis is a unique organ responsible for sperm production and androgen secretion in men. To analyze the human testis proteome on a large scale, 1-D SDS-PAGE and RP-LC-MS/MS were applied and 1430 proteins in the human testis were identified. Both the false-positive rate of peptides and protein identification confidence scores were calculated in the present study. Subsequent bioinformatics analysis of the human testis proteome revealed 39 testis-specific proteins which may be important for testis functions. And a large family of proteins were identified possibly involved in alternative splicing, which may also be involved in testis-specific splicing events and explain why splicing is so prevalent in the testis. Compared with the studies on brain proteome, researches on the testis proteome is still very limited. Studies of these proteins will give a better understanding on the function of the testis. Moreover, this large-scale identification of testis proteins in humans could serve as a reference for future studies on the mechanisms underlying male infertility, searching for potential contraceptive targets, and developing new treatments for testis cancer.  相似文献   

20.
The aim of this study was to determine if differential solubilization of human CNS proteins would increase the total number of proteins that could be visualized using 2-D gel electrophoresis. Hence, proteins were solubilized into Tris, CHAPS and SB3-10 before separation across a pH 4-7 IEF gradient and a 12-14% SDS polyacrylamide gel, which could be achieved with a run-to-run variation of 35% in spot intensity. Because Western blot analyses suggested proteins could be in more than one detergent fraction, we completed a conservative analyses of our 2-D gels assuming spots that appeared on multiple gels at the same molecular weight and pI were the same protein. These analyses show that we had visualized over 3000 unique protein spots across three 2-D gels generated from each sample of human frontal cortex and caudate-putamen. This represented, at worst, a significant increase in the number of spots visualized in the acidic protein spectrum compared to what has been reported in other studies of human CNS. This study, therefore, supports the proposal that the analysis of the human CNS proteome using 2-D gel electrophoresis, combined with appropriate sample preparation, can be used to expand the studies on the pathologies of neurological and psychiatric diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号