首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteomics may have enabled the root cause of a major human-blinding condition, age-related cataract, to be established. Cataract appears to result from the spontaneous decomposition of long-lived macromolecules in the human lens, and recent proteomic analysis has enabled both the particular crystallins, and the specific sites of amino acid modification within each polypeptide, to be identified. Analysis of proteins from cataract lenses has demonstrated that there are key sites on some structural proteins that show a consistently greater degree of deterioration than age-matched normal lenses. Proteomic analysis, using MS, revealed that the most abundant posttranslational modification of aged lens proteins is racemization. This is somewhat ironic, since structural isomers can be viewed as the “Achilles heel” of MS and there are typically few, if any, differences in the MS/MS spectra of tryptic peptides containing one d -amino acid. It is proposed that once a certain level of spontaneous PTM at key sites occurs, that protein–protein interactions are disrupted, and binding of complexes to cell membranes takes place that impairs cell-to-cell communication. These findings may apply more widely to age-related human diseases, in particular where the deterioration of long-lived proteins is a crucial component in the etiology.  相似文献   

2.
Proteases present in oral fluid effectively modulate the structure and function of some salivary proteins and have been implicated in tissue destruction in oral disease. To identify the proteases operating in the oral environment, proteins in pooled whole saliva supernatant were separated by anion-exchange chromatography and individual fractions were analyzed for proteolytic activity by zymography using salivary histatins as the enzyme substrates. Protein bands displaying proteolytic activity were particularly prominent in the 50–75 kDa region. Individual bands were excised, in-gel trypsinized and subjected to LC/ESI-MS/MS. The data obtained were searched against human, oral microbial and protease databases. A total of 13 proteases were identified all of which were of mammalian origin. Proteases detected in multiple fractions with cleavage specificities toward arginine and lysine residues, were lactotransferrin, kallikrein-1, and human airway trypsin-like protease. Unexpectedly, ten protease inhibitors were co-identified suggesting they were associated with the proteases in the same fractions. The inhibitors found most frequently were alpha-2-macroglobulin-like protein 1, alpha-1-antitrypsin, and leukocyte elastase inhibitor. Regulation of oral fluid proteolysis is highly important given that an inbalance in such activities has been correlated to a variety of pathological conditions including oral cancer.  相似文献   

3.
Purpose : Citrullination is a post‐translational modification of arginine residues to citrulline catalyzed by peptidyl arginine deiminases. Induced expression of citrullinated proteins are frequently detected in various inflammatory states including arthritis; however, direct detection of citrullination in arthritic samples has not been successfully performed in the past. Experimental design : Citrullination of human fibrinogen, a candidate autoantigen in arthritis, was studied. Accurate identification of citrullinated fibrinogen peptides from rheumatoid arthritis synovial tissue specimens was performed using accurate mass and retention time analysis. Results : A peptide with the sequence ESSSHHPGIAEFPSRGK corresponding to amino acids 559–575 of fibrinogen α‐chain was identified to be citrullinated with an occupancy rate between 1.4 and 2.5%. Citrullination of the peptide KREEAPSLRPAPPPISGGGYRARPAK corresponding to amino acids 52–77 of the fibrinogen β‐chain was identified with an occupancy rate of 1.2%. Conclusions and clinical relevance : We report a proof of principle study for the identification of citrullinated proteins and within them, identification of citrullination sites and quantification of their occupancies in synovial tissue from rheumatoid arthritis patients using high‐resolution MS. Detailed studies on which molecules are citrullinated in arthritis can provide information about their role in immune regulation and serve as novel biomarkers and potentially even as therapeutic targets.  相似文献   

4.
Human serum albumin is a remarkable protein found in high concentrations in the body. It contains at least seven distinct fatty acid binding sites and two principle sites for drugs. Its primary function is to act as a fatty acid transport system, but it also shows the capacity to bind a diverse range of acidic, neutral and zwitterionic drug molecules. In this paper we investigate the ligand binding selectivity of HSA using cheminformatics analyses and molecular dynamics simulations. We compare and contrast the known ligand binding specificities as obtained from X-ray structural data using PCA, with additional direct analyses of the seven key binding pockets using analyses derived from molecular simulations. We assess both the fatted and defatted states of HSA using 100 ns simulations of the APO and HOLO forms, as well as structures containing one, three and seven myristic acid molecules. We find that differences in fatty acid binding can have a dramatic effect on the flexibility of the protein and also the pocket characteristics. We discuss how the remarkable selectivity of the HSA pockets towards both endogenous fatty acids and exogenous drug molecules is not simply controlled by bulk property effects such as ionization state and lipophilicity.  相似文献   

5.
The removal of albumin and other high abundance proteins is a routine first step in the analysis of serum and plasma proteomes. However, as albumin can bind proteins and peptides, there is a universal concern as to how the serum proteome is changed by the removal of albumin. To address this concern, the current study was designed to identify proteins and peptides removed from the serum during albumin depletion; to determine which of these are bound to albumin (rather than copurified) and whether the bound proteins are intact proteins or peptide fragments. Sequential, independent analyses including both anti‐albumin antibody (anti‐HSA) affinity chromatography and SEC were used to isolate albumin‐bound proteins. RP‐HPLC and 1‐D SDS‐PAGE were then used to further separate the proteins prior to identification by MS/MS. Finally, whole protein molecular weight (MW) MS measurements coupled with protein coverage obtained by MS were combined to assess whether the bound proteins were intact or peptide fragments. Combining the results from multiple approaches, 35 proteins, of which 24 are intact, were found to be associated with albumin, and they include both known high and low abundance proteins.  相似文献   

6.
The PI3K/AKT/mTOR signaling pathway has been identified as an important target for cancer therapy. Attempts are increasingly made to design the inhibitors against the key proteins of this pathway for anti-cancer therapy. The PI3K/mTOR dual inhibitors have proved more effective than the inhibitors against only single protein targets. Recently discovered PKI-179, an orally effective compound, is one such dual inhibitor targeting both PI3K and mTOR. This anti-cancer compound is efficacious both in vitro and in vivo. However, the binding mechanisms and the molecular interactions of PKI-179 with PI3K and mTOR are not yet available. The current study investigated the exact binding mode and the molecular interactions of PKI-179 with PI3Kγ and mTOR using molecular docking and (un)binding simulation analyses. The study identified PKI-179 interacting residues of both the proteins and their importance in binding was ranked by the loss in accessible surface area, number of molecular interactions of the residue, and consistent appearance of the residue in (un)binding simulation analysis. The key residues involved in binding of PKI-179 were Ala-805 in PI3Kγ and Ile-2163 in mTOR as they have lost maximum accessible surface area due to binding. In addition, the residues which played a role in binding of the drug but were away from the catalytic site were also identified using (un)binding simulation analyses. Finally, comparison of the interacting residues in the respective catalytic sites was done for the difference in the binding of the drug to the two proteins. Thus, the pairs of the residues falling at the similar location with respect to the docked drug were identified. The striking similarity in the interacting residues of the catalytic site explains the concomitant inhibition of both proteins by a number of inhibitors. In conclusion, the docking and (un)binding simulation analyses of dual inhibitor PKI-179 with PI3K and mTOR will provide a suitable multi-target model for studying drug–protein interactions and thus help in designing the novel drugs with higher potency.  相似文献   

7.
Hfq is an abundant RNA-binding bacterial protein that was first identified in E. coli as a required host factor for phage Qβ RNA replication. The pleiotrophic phenotype resulting from the deletion of Hfq predicates the importance of this protein. Two RNA-binding sites have been characterized: the proximal site which binds sRNA and mRNA and the distal site which binds poly(A) tails. Previous studies mainly focused on the key residues in the proximal site of the protein. A recent mutation study in E. coli Hfq showed that a distal residue Val43 is important for the protein function. Interestingly, when we analyzed the sequence and structure of Staphylococcus aureus Hfq using the CONSEQ server, the results elicited that more functional residues were located far from the nucleotide-binding portion (NBP). From the analysis seven individual residues Asp9, Leu12, Glu13, Lys16, Gln31, Gly34 and Asp40 were selected to investigate the conformational changes in Hfq–RNA complex due to point mutation effect of those residues using molecular dynamics simulations. Results showed a significant effect on Asn28 which is an already known highly conserved functionally important residue. Mutants D9A, E13A and K16A depicted effects on base stacking along with increase in RNA pore diameter, which is required for the threading of RNA through the pore for the post-translational modification. Further, the result of protein stability analysis by the CUPSAT server showed destabilizing effect in the most mutants. From this study we characterized a series of important residues located far from the NBP and provide some clues that those residues may affect sRNA binding in Hfq.  相似文献   

8.
Alzheimer disease (AD) is a neurodegenerative disorder characterized pathologically by the accumulation of senile plaques and neurofibrillary tangles, and both these pathological hallmarks of AD are extensively modified by glycosylation. Mounting evidence shows that alterations in glycosylation patterns influence the pathogenesis and progression of AD, but the vast number of glycan motifs and potential glycosylation sites of glycoproteins has made the field of glycobiology difficult. However, the advent of glycoproteomics has produced major strides in glycoprotein identification and glycosylation site mapping. The use of lectins, proteins that have strong affinity for specific carbohydrate epitopes, to enrich glycoprotein fractions coupled with modern MS, have yielded techniques to elucidate the glycoproteome in AD. Proteomic studies have identified brain proteins in AD and arguably the earliest form of AD, mild cognitive impairment, with altered affinity for Concanavalin-A and wheat germ agglutinin lectins that are consistent with the pathology and progression of this disorder. This is a relatively nascent field of proteomics research in brain, so future studies of lectin-based brain protein separations may lead to additional insights into AD pathogenesis and progression.  相似文献   

9.
The most complete proteome of human lenses has been compiled using 2-D LC-MS/MS analysis of foetal, aged normal and advanced nuclear cataract lenses. A total of 231 proteins were identified across all lens groups, including 112 proteins that have not been reported previously. Proteins were grouped according to their PANTHER molecular function classification in order to facilitate comparisons. Previously unreported N-terminal acetylation was detected in a number of proteins, with the majority being associated with the prior removal of a methionine residue. This pattern of proteolysis may indicate that methionine aminopeptidase activity is present in human lenses. Acetylation is likely to aid in the stability of proteins that are present in the lens for many decades. Protein sequences were also used to interrogate the three human lens cDNA libraries publicly available. Surprisingly, 84 proteins we identified were not present in the cDNA libraries.  相似文献   

10.
A hard disk drive (HDD) is very sensitive to shock. Increasing portability demands have led to increased HDD exposure to unexpected shocks. Therefore, the dynamic characteristics of an HDD were utilized to investigate the relative behavior of the disk and head stack assembly (HSA) during operational shock. A finite element model of HDD was constructed to simulate operational shock. This model included the spindle system, base, HSA, and disk. The relative behavior of the disk and HSA was analyzed using different bases with different stiffness. A drop test was performed to verify the simulation results. A modified base design was then proposed to protect against contact between the disk and HSA in HDD.  相似文献   

11.
蛋白质相互作用中界面残基的识别在药物设计与生物体的新陈代谢等方面有着广泛应用。基于朴素贝叶斯分类器对属性条件独立性的要求,构建了由蛋白质序列谱和溶剂可及表面积组成的蛋白质相互作用特征模型。在一个具有代表性的蛋白质异源复合物组成的数据集中取得了68.1%的准确率、0.201 的相关系数、40.2%的特异度和 49.9%的灵敏度,取得了比其他方法更优的结果,且远优于随机的实验结果。通过一个三维可视化的结果更好地验证了方法的有效性。  相似文献   

12.
This report presents a proteomic analysis and provides a reference map of the 5-50-kDa components of normal amniotic fluid collected in gestational weeks 16-18. Early amniocentesis samples were pooled and proteins with molecular mass lower than albumin were separated by gel filtration chromatography. The 2-DE protocol was optimized for the separation of the small proteins and peptides in the fraction of interest. A total of 132 Coomassie blue-stained protein spots were analyzed, following in-gel tryptic digestion, by ESI-MS/MS and 49 different gene products were identified. The treatment with alkaline phosphatase caused the shift of the phosphoisoforms of insulin-like growth factor-binding protein-1 and of the N-terminal osteopontin fragment. Of the 33 full-length proteins identified in the 2-DE profile, 23 had not been previously detected in the amniotic fluid and, of these, 22 are not present in the human plasma proteome under physiological conditions. Fragments of 16 larger proteins were identified and the sequence coverage data revealed that several correspond to autonomous domains that may have biological roles on their own. Several of the detected proteins and peptides appear to be involved in critical regulatory processes associated with placentation and early development, thus representing potential markers of various physiological or pathological conditions.  相似文献   

13.
During cancer invasion, the binding of urokinase-type plasminogen activator (uPA) to its receptor (uPAR) on the surface of a cancer cell is considered a trigger for invasion. Here, we present a stable structure of the solvated complex formed between uPA and uPAR (uPA-uPAR) and investigate the specific interactions between uPA and uPAR by ab initio fragment molecular orbital (FMO) calculations. The result indicates that the electrostatic interactions between the charged amino acid residues existing in both uPA and uPAR make a large contribution to the binding between uPA and uPAR. In particular, Lys23, Lys46, Lys98 and Lys61 of uPA are found to have strong attractive interactions with uPAR. To elucidate the effect of these residues on the interactions between uPA and uPAR, we substituted each of them with the uncharged amino acid Leu and investigated the interactions between the mutated uPA and wild-type uPAR. The interaction energies indicate that Lys46 and Lys98, which bind uPA to the rim of the central ligand-binding cavity of uPAR, make greater contributions to the binding between uPA and uPAR than Lys23, which is positioned at the bottom of the ligand-binding cavity of uPAR. The effect of hydrating water molecules located between uPA and uPAR is also investigated to be significant for the specific interactions between uPA and uPAR. These results are expected to be informative for developing new peptide antagonists that block the binding of uPA to uPAR.  相似文献   

14.
The emerging field of chemo- and pharmacoproteomics studies the mechanisms of action of bioactive molecules in a systems pharmacology context. In contrast to traditional drug discovery, pharmacoproteomics integrates the mechanism of a drug's action, its side effects including toxicity, and the discovery of new drug targets in a single approach. Thus, it determines early favorable (e.g. multiple kinase target in cancer drugs) and unfavorable (e.g. side effects) polypharmacology. Target profiling is accomplished using either active site-labeling probes or immobilized drugs. This strategy identifies direct targets and has in fact enabled even the determination of binding curves and half maximum inhibitory concentrations of these targets. In addition, the enrichment greatly reduces the complexity of the proteome to be analyzed by quantitative MS. Complementary to these approaches, global proteomics profiling studying drug treatement-induced changes in protein expression levels and/or post-translational modification status have started to become possible mostly due to significant improvements in instrumentation. Particularly, when using multidimensional separations, a considerable proteome depth of up to 10 000 proteins can be achieved with current state-of-the-art mass spectrometers and bioinformatics tools. In summary, chemo- and pharmacoproteomics has already contributed significantly to the identification of novel drug targets and their mechanisms of action(s). Aided by further technological advancements, this interdisciplinary approach will likely be used more broadly in the future.  相似文献   

15.
The concept of aqueous computing involves the use of large numbers of initially identical molecules to serve as memory registers in a fluid environment. Here, we test a new approach to aqueous computing where modified nucleotides are used to “write” on double-stranded DNA molecules to establish the logical values of true or false for a set of clauses. We introduce an implementation scenario where binding proteins specific to each modification can be used to selectively isolate DNA fragments with these modified nucleotides. In addition, we present initial results showing successful incorporation and detection of modifications. We have successfully labeled DNA fragments with four modifications, specifically Alexa Fluor-488, BODIPY-FL, biotin, and digoxigenin using polymerase chain reaction. The first two produce fluorescent molecules that can be distinguished by their color. We have confirmed that binding proteins or antibodies to these four modifications are specific and do not detect the other modifications. We have also successfully separated the DNAs labeled with Alexa Fluor and biotin using binding proteins. We present attempts at rebinding these modified molecules to a second binding protein; the equivalent of applying more than one clause to a set of values. We have found some challenges with this approach that likely can be resolved with further work. As there are millions of molecules with corresponding binding proteins, this approach has the potential to yield unlimited computing power as compared with other aqueous computing methods.  相似文献   

16.
Malaria causes a worldwide annual mortality of about a million people. Rapidly evolving drug-resistant species of the parasite have created a pressing need for the identification of new drug targets and vaccine candidates. By developing fractionation protocols to enrich parasites from low-parasitemia patient samples, we have carried out the first ever proteomics analysis of clinical isolates of early stages of Plasmodium falciparum (Pf) and P. vivax. Patient-derived malarial parasites were directly processed and analyzed using shotgun proteomics approach using high-sensitivity MS for protein identification. Our study revealed about 100 parasite-coded gene products that included many known drug targets such as Pf hypoxanthine guanine phosphoribosyl transferase, Pf L-lactate dehydrogenase, and Plasmepsins. In addition, our study reports the expression of several parasite proteins in clinical ring stages that have never been reported in the ring stages of the laboratory-cultivated parasite strain. This proof-of-principle study represents a noteworthy step forward in our understanding of pathways elaborated by the parasite within the malaria patient and will pave the way towards identification of new drug and vaccine targets that can aid malaria therapy.  相似文献   

17.
The aim of this study was to use proteomic approaches to examine differences in protein expression in placentae from normal term and preterm preeclamptic pregnancies and to validate the data thus obtained by other independent methods. Using 2-DE we found that 80% of the proteins were present in both normal and preeclamptic placentae. However, 26 proteins in the normal term placentae were not matched in the preterm preeclamptic group. Six proteins showed increased intensity and one protein was down-regulated in preeclampsia. Four of the seven proteins that were altered in preeclampsia were further analyzed by Western blot and immunohistochemistry. Identification by MS techniques revealed these proteins to be involved in regulatory pathways activated by stress. This is significant because preeclampsia is a multisystem disorder in human pregnancies that results in considerable oxidative and nitrative stress. Three proteins identified by MS to be Hsp27, catalase, and glucose-regulated protein were confirmed by Western blot analysis to be significantly up-regulated in preeclampsia. Endothelial monocyte-activating polypeptide was shown to be down-regulated in preeclampsia by 2-DE and MS.  相似文献   

18.
In the present study we have used an in vitro culture system that induces differentiation of human CD34(+) cells down the erythroid lineage along with 2-D DIGE to determine the differential proteome of erythroblasts at specific developmental stages during erythropoiesis. We initially distinguished 154 proteins differentially expressed between pro-normoblasts and polychromatic/orthochromatic erythroblasts, of which 24 protein spots, representing 21 different proteins, were identified following MS/MS and verification in replicate experiments with cells from different individuals. These data were confirmed by analysis of the differential proteome of erythroblasts at more discrete stages of erythropoiesis using 2-D DIGE and by mapping the expression of three identified proteins (Annexin I, Annexin II, Carbonic Anhydrase I) throughout erythropoiesis by Western blot with specific antisera. In addition, the differential expression of proteins due to biological variation, such as polymorphism, was determined by comparing erythroblasts at the same developmental stage from different individuals; none of the proteins thus identified were represented in the above data set. Finally, we discuss the problems associated with 2-D DIGE gel-based proteomic approaches such as ours and suggest a modified approach for decreased inter-gel variation, improved protein resolution and increased protein concentration, which should significantly facilitate protein identification.  相似文献   

19.
蛋白质棕榈酰化是一种可逆的蛋白质翻译后修饰,在蛋白质稳定性和亚细胞定位等方面发挥重要作用。构建了一种预测蛋白质棕榈酰化位点的新模型(PSSM-CKSAAP-RFE)。采用蕴含进化信息的[k]-spaced氨基酸对组分方法表征蛋白质序列,通过递归特征消除法进行特征选择;基于上述特征训练支持向量机分类器,并采用夹克刀交叉验证法测试模型性能。研究结果显示,训练集和独立测试集的预测准确率、马修斯相关系数、特异性、敏感性和受试者工作特征曲线下面积分别为98.44%、0.94、98.95%、95.65%和0.990,以及98.41%、0.93、99.39%、92.31%和0.994,优于文献中报道的相关方法,为蛋白质棕榈酰化位点的预测提供了一种新模型。  相似文献   

20.
在计算化学和药物设计领域中,精确预测小分子配体的蛋白质靶标是一件极具挑战性工作,特别是那些与相同小分子配体相互作用,但蛋白间并不具有显著序列或结构相似性的靶标蛋白。为了研究相同小分子配体与不相关的蛋白质靶标之间的结合特性,我们使用蛋白水合效应分析 (SPA) 程序研究了 33 对药物靶蛋白结合位点水分子的结构特性。每个蛋白对中的两个蛋白质,均由可与相同配体小分子相结合的两个不相关的蛋白质组成。通过计算两蛋白质间的水化位点替代重叠率,我们发现共有高达 73% 的蛋白对中有着显著的水分子替代重叠率值。特别是我们发现相同小分子与不同蛋白相互作用时,或许存在一种特别的“识别代码”,即小分子配体的功能基团与结合位点的水分子之间存在着较好的几何构型相似性。在无法确定小分子与蛋白相互作用模式时,可以依靠活性结合腔穴中水分子的结合构型特征,进行粗略估算与预测,对蛋白-配体相互作用模式研究有重要的实用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号