首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arsenic is widely distributed in nature and is mainly transported in the environment by water. Consumption of artesian well water with high levels of arsenic has been associated with genitourinary cancer, especially bladder transitional cell carcinoma (TCC). To search for biomarkers that are specific for arsenic associated with the diagnosis of bladder TCC, proteins in the urine of non-cancer urological patients and patients with either bladder TCC or arsenic-associated bladder TCC were systematically examined by HPLC ESI-MS/MS. Urine specimens were collected by catheterization from patients and age- (within 5?years) and sex-matched non-cancer urological patients. A nano-HPLC-ESI-MS/MS was used to generate proteome patterns from urine specimens obtained from patients with arsenic-associated (n?=?8) and non-arsenic-associated (n?=?8) primary TCC and from sex- and age-matched non-cancer urological patients (n?=?8). Three urinary proteins were found to have significantly altered levels in patients following chronic arsenic exposure. These proteins were a disintegrin and metalloprotease (ADAM) protein, a calpain9, and ring finger protein 20. The large-scale identification of urinary proteomes using HPLC ESI-MS/MS may serve as an ideal and efficient method to establish a panel of potential arsenic-associated TCC biomarkers and may help elucidate the mechanisms involved in bladder cancer induced by chronic arsenic exposure.  相似文献   

2.
Renal biopsy remains the gold standard test for definitive diagnosis of glomerular diseases. This invasive procedure; however, has a potential risk for serious complications and is contraindicated in some patients. It is therefore essential to search for noninvasive biomarkers for the diagnosis and prognosis of glomerular diseases. The urine is the most appropriate sample for biomarker discovery in glomerular diseases. Urinary proteomics has thus gained a wide acceptance and has been extensively applied to this area. This review focuses mainly on applications of proteomic technologies to urinary proteome profiling for biomarker discovery in various glomerular diseases, including diabetic nephropathy, IgA nephropathy, membranous nephropathy, focal segmental glomerulosclerosis, primary membranoproliferative glomerulonephritis, lupus nephritis, antiglomerular basement membrane disease, minimal change disease, and pediatric nephrotic syndrome. Recent findings from these studies are summarized and discussed. These data clearly underline the great promise of urinary proteomics in biomarker discovery for glomerular diseases.  相似文献   

3.
Guillain‐Barré Syndrome (GBS) is a rare autoimmune inflammatory polyneuropathy with a high risk of respiratory failure and unclear pathogenesis. Currently, there are no valid biomarkers for diagnosis of GBS. We used 2‐DE and MS to analyze the protein profiles of five pairs of cerebrospinal fluid (CSF) samples of the GBS patients and the patient controls. Three proteins (orosomucoid, haptoglobin and apolipoprotein A‐IV) were up‐regulated, and two proteins (prostaglandin D2 synthase and transthyretin) were down‐regulated in the CSF of the GBS patients. The CSF haptoglobin level, quantified by enzyme‐linked immunosorbent assay, was significantly higher in the GBS patients (12.44 ± 2.70 μg/mL) compared to the chronic inflammatory demyelinating polyradiculoneuropathy (2.82 ± 0.83 μg/mL), viral meningitis (3.57 ± 0.97 μg/mL) and control patients (1.44 ± 0.35 μg/mL, p<0.05). This study indicated that protein profile analysis using a combination of 2‐DE and MS provides an effective strategy for elucidating the pathogenesis and identifying potential CSF biomarkers for GBS. The raised intrathecal synthesis of haptoglobin specifically only in GBS patients, but not in patients with other neurological diseases examined, provides evidence of central nervous system involvement in GBS, and may be used as a potential diagnostic marker for GBS.  相似文献   

4.
Whipple's disease (WD) is a chronic multisystemic infection, caused by the bacterium Tropheryma whipplei. The main clinical presentations are classic WD (CWD) with histologic lesions in the gastrointestinal tract, endocarditis, and isolated neurologic infection. The current strategy for diagnosis remains invasive.The present study aimed to select the protein candidates for serological diagnosis of WD. The first step was to identify candidate proteins by an immunoproteomic approach combining 2‐DE using a total extract of a T. whipplei, immunoblotting, and MS. The second step was to validate the discovered biomarkers using a recombinant protein‐based ELISA. Serum samples from 18 patients with WD and from 54 control individuals were tested. A sugar ABC transporter, TWT328 (sensitivity (Se) 61%, specificity (Sp) 87%, positive predictive value (PPV) 61%, negative predictive value (NPV) 87%, and positive likelihood ratio (PLR) 4.69) was the best marker for development of serodiagnosis for CWD. We also obtained a reproducible immunoreactive protein pattern for patients with isolated neurological infection due to T. whipplei (Se 100%, Sp 93%, PPV 55.5%, NPV 100%, and PLR 13.51) as an encouraging step towards noninvasive diagnosis of this particular manifestation. Nine recombinant candidates have been successfully screened with serum samples. Results from these ELISA assays skewed with those obtained with immunoblots.  相似文献   

5.
Purpose: Kidney transplantation is the treatment of choice for end stage renal disease, with long-term allograft loss being the major obstacle, and for which potential treatments are based on a histological diagnosis. The problem is that markers for predicting graft rejection are limited in number, are invasive, and are quite non-specific. We have hypothesized that protein biomarkers might be discovered in the urine of patients when acute or chronic rejection might be occurring. Experimental design: We have established a workflow in which initial screening for candidate biomarkers is first performed using urine samples on large-scale antibody microarrays. This approach generated several dozen candidates. The next step is to qualify some of the strongest signals using the high-throughput Reverse Capture Protein Microarray platform. Results: Four top candidates including ANXA11, Integrin α3, Integrin β3 and TNF-α, initially identified by the antibody microarray platform, were all qualified using Reverse Capture Protein Microarrays. We also used receiver operating condition (ROC) curves to independently quantify the specificity and sensitivity of these four analytes. Conclusions and clinical relevance: The present data suggest that these novel four analytes in the urine, together or independently, may contribute to a robust and quantitative urine proteomic signature for diagnosing acute or chronic rejection of renal allografts.  相似文献   

6.
Biomarkers are greatly needed in the fields of neurology and psychiatry, to provide objective and earlier diagnoses of CNS conditions. Proteomics and other omics MS-based technologies are tools currently being utilized in much recent CNS research. Saliva is an interesting alternative biomaterial for the proteomic study of CNS disorders, with several advantages. Collection is noninvasive and saliva has many proteins. It is easier to collect than blood and can be collected by professionals without formal medical training. For psychiatric and neurological patients, supplying a saliva sample is less anxiety-provoking than providing a blood sample, and is less embarrassing than producing a urine specimen. The use of saliva as a biomaterial has been researched for the diagnosis of and greater understanding of several CNS conditions, including neurodegenerative diseases, autism, and depression. Salivary biomarkers could be used to rule out nonpsychiatric conditions that are often mistaken for psychiatric/neurological conditions, such as fibromyalgia, and potentially to assess cognitive ability in individuals with compromised brain function. As MS and omics technology advances, the sensitivity and utility of assessing CNS conditions using distal human biomaterials such as saliva is becoming increasingly possible.  相似文献   

7.
Only 30% of patients with elevated serum prostate specific antigen (PSA) levels who undergo prostate biopsy are diagnosed with prostate cancer (PCa). Novel methods are needed to reduce the number of unnecessary biopsies. We report on the identification and validation of a panel of 12 novel biomarkers for prostate cancer (PCaP), using CE coupled MS. The biomarkers could be defined by comparing first void urine of 51 men with PCa and 35 with negative prostate biopsy. In contrast, midstream urine samples did not allow the identification of discriminatory molecules, suggesting that prostatic fluids may be the source of the defined biomarkers. Consequently, first void urine samples were tested for sufficient amounts of prostatic fluid, using a prostatic fluid indicative panel (“informative” polypeptide panel; IPP). A combination of IPP and PCaP to predict positive prostate biopsy was evaluated in a blinded prospective study. Two hundred thirteen of 264 samples matched the IPP criterion. PCa was detected with 89% sensitivity, 51% specificity. Including age and percent free PSA to the proteomic signatures resulted in 91% sensitivity, 69% specificity.  相似文献   

8.
Wilson's disease (WD) is characterized by excessive accumulation of intracellular copper in liver and extrahepatic tissues, leading to significant oxidative stress and tissue damage. To date, several diagnostic biomarkers for WD such as serum ceruloplasmin, serum or urine copper levels and copper content in liver have been identified. However, these biomarkers may not be convincing for the diagnosis in some WD patients. To identify additional novel diagnostic biomarkers, we compared the serum protein profiles of asymptomatic childhood WD patients (n=20), without neurologic manifestation or liver cirrhosis, with normal controls (n=13). Fourteen spots, five up‐regulated and nine down‐regulated (>2‐fold), were differentially expressed in WD patients in comparison to normal control on 2‐DE. Among them, three spots were down‐regulated in both male and female WD. MS/MS analysis revealed that the three spots were complement component C3, complement factor B and alpha‐2 macroglobulin. By comparative proteome analysis, complement component C3, complement factor B and alpha‐2 macroglobulin, which are related to oxidative stress and inflammation, turned out to be good candidates for novel diagnostic biomarkers for early stages of WD.  相似文献   

9.
Purpose : The purposes of this study were to confirm previously found candidate epithelial ovarian cancer biomarkers in urine and to compare a paired serum biomarker panel and a urine biomarker panel from the same study cohort with regard to the receiver operating characteristic curve (ROC) area under the ROC curve (AUC) values. Experimental design : Four significant urine biomarkers were confirmed among 130 pelvic mass patients in the present study. The four biomarkers form a potential urine biomarker panel. From the same study cohort, the potential urine biomarker panel was compared to a serum biomarker panel, consisting of seven proteins/peptides, OvaRI. Results : Multivariate analysis of the urine panel demonstrated a significant differentiation (p<0.0001) between epithelial ovarian cancer patients and patients with benign ovarian pelvic masses. The ROC AUC of the urine panel was 0.84 and the ROC AUC of OvaRI was 0.83. Combining the urine panel with OvaRI demonstrated a significant contribution from both, for urine peaks, OR=2.12 and for OvaRI, OR=1.39; the ROC AUC of this model was 0.88. Conclusions and clinical relevance : We demonstrated that both urine and serum can be used individually or in combination to potentially aid in ovarian cancer diagnostics. Urine proteomic profiling could provide biomarkers for the non‐invasive test required in clinical practice.  相似文献   

10.
Urine is a human specimen that is easily obtained non-invasively for clinical diagnosis. We attempted to enhance the resolution of current human urine proteomes and construct a comprehensive reference database for advanced studies, such as the discovery of biomarkers for renal diseases. Multi-dimensional LC-MS/MS was coupled with de novo sequencing and database matching. The proposed approach improved the identification of not only the proteins, but also the post-translational sites of urinary proteins. We identified 165, 200 and 259 unique gene products in the urine proteomes from males, females and pregnant women, respectively. When all of the results were combined and the redundancies removed, a total of 1095 distinct peptides were identified. Of these, 1016 peptides were associated with 334 unique gene products. In this study, over 100 gene products, including some disease-related proteins, were detected in urine for the first time by proteomic approaches. Various proteins with novel post-translational hydroxylation were identified using the MASCOT program and de novo sequencing. All proteins with peptide information were summarized into a comprehensive urine protein database. We believe that this comprehensive urine proteome database will assist in the identification of urinary proteins/polypeptides whose spectra are difficult to interpret in the discovery of urinary biomarkers.  相似文献   

11.
Proteinuria is the hallmark of renal diseases and the characterization of the urinary protein composition may become an important source of information for diagnosis and research. So far, protein analysis in urine has been utilized for a generic individuation of site-specific defects (glomerular vs. tubular) but there is a need for an extension of proteomics to specific urinary biomarkers in selected clinical conditions. The identification of fragments of proteins in plasma and urine may increase the spectrum of urinary biomarkers. The unique speculative application so far proposed for protein fragments is nephrotic syndrome, and specifically focal segmental glomerulosclerosis, in which case they reflect intrinsic proteolysis occurring in plasma and represent surrogate biomarkers of the disease activity. Albumin is probably the most studied protein. Several of the albumin fragments present a peculiar distribution of the fingerprint peptide pattern containing both the N-terminal region and the C-terminal domain with a complete lack of any MS signals for the internal sequence region. Their characterization utilizing new strategies based on 2-D nondenaturing electrophoresis is now in progress. Studies on a direct characterization of proteases in plasma and urine will also define the participation of proteases to the genesis of renal diseases.  相似文献   

12.
Diabetic nephropathy (DN) is a complication associated with diabetes, leading to end-stage renal disease (ESRD). Despite significant progress in understanding DN, the cellular mechanisms leading to the renal damage are incompletely defined. In this study, with the aim to identify urine biomarkers for the early renal alterations in type 2 diabetes mellitus (T2D), we performed urinary proteomic analysis of 10 normoalbuminuric patients with T2D, 12 patients with type 2 DN (T2DN), and 12 healthy subjects. Proteins were separated by 2-DE and identified with ESI-Q-TOF MS/MS. Comparing the patients proteomic profiles with those of normal subjects, we identified 11 gradually differently changed proteins. The decreased proteins were the prostatic acid phosphatase precursor, the ribonuclease and the kallikrein-3. Eight proteins were progressively increased in both patients groups: transthyretin precursor, Ig κ chain C region, Ig κ chain V-II region Cum, Ig κ-chain V-III region SIE, carbonic anhydrase 1, plasma retinol-binding protein, β-2-microglobulin precursor, β-2-glycoprotein 1. The proteomic analysis allowed us to identify several increased urinary proteins, not only in T2DN but also in T2D patients in which the microalbuminuria was in the normal range. These patterns of urinary proteins might represent a potential tool for a better understanding of diabetic renal damage.  相似文献   

13.
14.
The pathology of Alzheimer's disease (AD) begins years prior to clinical diagnosis. The development of antecedent biomarkers that indicate the presence of AD pathology and predict risk for decline in both cognitively normal and mildly impaired individuals will be useful as effective therapies are developed. While cerebrospinal fluid (CSF) markers such as amyloid-β (Aβ) 42 and tau are useful, additional biomarkers are needed. To identify new markers, we utilized 2-D difference gel electrophoresis (2-D DIGE) of individual CSF samples from subjects with very mild AD versus controls after depletion of high-abundant proteins. Protein spots displaying differential abundance between the two groups were identified with MS. A number of candidate biomarkers were identified in 18 gel features. Selected candidates were quantified in a larger clinical set using ELISA. The mean levels of α1-antichymotrypsin (ACT), antithrombin III (ATIII), and zinc-α2-glycoprotein (ZAG) were significantly higher in the mild AD group, and the mean level of carnosinase 1 (CNDP1) was decreased. When these biomarkers are optimally combined, there is a strong trend toward greater specificity and sensitivity based on clinical diagnosis than when used individually. Our findings provide novel biomarker candidates for very mild and mild AD that can be further assessed as antecedent markers and predictors of clinical progression.  相似文献   

15.
We have investigated urine obtained from Sprague Dawley rats before and after administration of cis-Platin, aiming at the definition of biomarkers for drug-induced cytotoxicity. Rats were treated with 3 or 6 mg/kg cis-Platin (i.p., single injection) and urine samples were collected before and after drug or saline treatment. Analysis of the low molecular weight proteome (<20 kDa) using capillary-electrophoresis coupled mass spectrometry allowed us to tentatively identify 34 urinary peptides that show significant differences between control and treated animals, and hence may serve as a potential biomarker for cis-Platin-induced nephrotoxicity. These biomarkers were confirmed in a blinded assessment of additional samples. The blinded data also revealed time-dependency of induced changes. Some of the potential biomarkers could be sequenced. This information revealed great similarity between cis-Platin-induced changes and significant changes in the urinary proteome of patients suffering from tubular injury (Fanconi syndrome). Our study strongly suggests that (drug-induced) nephrotoxicity can be detected with high accuracy in laboratory rodents using urinary proteome analysis. The effects observed are very similar to those seen in corresponding human diseases and similar approaches may be very helpful in evaluating drug-induced organ damage in preclinical animal models. This study aiming at the definition of biomarkers for drug-induced cytotoxicity may serve as a proof-of-principle for the use of urinary proteomics in assessment of drug-induced nephrotoxicity.  相似文献   

16.
HIV-1 infection of the brain commonly leads to cognitive impairments (CIs). In its most severe form, HIV-1 associated dementia (HAD) is associated with advanced immune suppression and debilitating loss of memory, behavioral, and motor functions. Despite significant research activities, diagnosis remains one of exclusion. Bioimaging, neuropsychological testing, and viral and immune biomarkers serve to support but not define a diagnosis of HIV-1 associated CI. This is timely and required as brain injury triggered by HIV-1 can be controlled, in part, by antiretroviral medicines. The recent development of proteomics has opened new ways to study viral-host interactions which may provide new insight into treatment and disease monitoring. To this end, we developed a proteomics platform for HIV-1 associated CI biomarker discovery and used it to perform a pilot study for sera-associated HAD proteins. A 2-DE map of a serum proteome was focused on differentially expressed proteins. Differential expression of two proteins was validated by Western blot tests identifying afamin and ceruloplasmin as a potential biomarkers for CI associated with advanced HIV-1 infection.  相似文献   

17.
Urinary proteomic profiling has potential to identify candidate biomarkers of renal injury in infants provided an adequate urine sample can be obtained. Although diapers are used to obtain urine for clinical evaluation, their use for proteomic analysis has not been investigated. We therefore performed feasibility studies on the use of diaper-extracted urine for 2-D PAGE. Pediatric waste urine (2–20 mL) was applied to gel-containing, non-gel and cotton-gauze diapers and then mechanically expressed. Urine volume and total protein were measured pre- and post-extraction. Proteins were separated via 2-D PAGE following application of urine (20–40 mL) to each matrix. 2-D PAGE was also performed on clinical specimens collected using each diaper type. Differences in the adsorption and retention of urine volume and protein were noted between matrices. Non-gel and cotton-gauze diapers provided the best protein/volume recovery and the lowest interference with the Bradford assay. 2-D PAGE was also successfully completed using urine samples from both cotton fiber matrices. Conversely, samples from low-gel diapers demonstrated poor protein separation and reproducibility. Diapers containing cotton–fiber matrices appear adequate for 2-D PAGE. Qualitative and quantitative analyses of resolved proteins using replicate, high-resolution gels will be required, however, before diaper-extracted urine can be applied in proteomic profiling.  相似文献   

18.
The increasing application of proteomic methods to biomedical research is providing us with important new information; it holds particular promise in advancing basic and clinical renal research, but whether proteomics can ever become a routine diagnostic tool in nephrology is still uncertain. Currently, proteomic techniques are used by many groups in the search for "biomarkers" of disease, especially kidney disease, because of the ready availability of urine as an "end-product" of renal function. However, the question as to whether any disease-specific biomarkers exist or can be identified by proteomics is also uncertain. A growing application of proteomics in biomedical research is to understand the mechanism(s) of disease. This brief review is selective; in it we consider examples of proteomic studies of human urine for biomarkers, others that have explored renal physiology, and still others that have begun to probe the proteome of organelles. No single approach is sufficiently comprehensive, and the pooled application of proteomics to renal research will undoubtedly improve our understanding of renal function and enable us to explore in more detail subcellular structures, and to characterize cellular processes at the molecular level. When combined with other techniques in renal research, proteomics, and related analytical methods could prove indispensable in modeling renal function, and perhaps also in diagnosis and management of renal disease.  相似文献   

19.
Diabetic nephropathy (DN) is a serious kidney complication of diabetes, and constitutes the leading cause of end-stage renal disease. The earliest clinical evidence of DN is microalbuminuria, a term which refers to the appearance of small but abnormal amounts of albumin in the urine. However, screening methods for DN, such as biomarker assays, are yet to be developed for type 2 DN. In the present study, in an attempt to identify the biomarkers for initial diagnoses of type 2 DN, the protein profiles of human sera collected from 30 microalbuminuric type 2 diabetic patients were compared with those collected from 30 normoalbuminuric type 2 diabetic patients, via 2-DE. As a result, a total of 18 spots were determined to have different protein levels in the microalbuminuric patients. Twelve spots had lower protein levels of approximately 50%, and the other six had higher levels of approximately 100-300% as compared to the spots of normoalbuminuric patients. These spots were identified with ESI-Q-TOF (ESI-quadrupole-TOF) MS. Among the identified proteins, vitamin D-binding protein (DBP) and pigment epithelium-derived factor (PEDF) were verified by Western blotting. The results of this study indicate that the DBP may be employed as diagnostic and monitoring biomarkers of type 2 DN, contingent on further study into the matter.  相似文献   

20.
Urinary proteomics has become one of the most attractive subdisciplines in clinical proteomics as the urine is an ideal source for the discovery of noninvasive biomarkers for kidney and nonkidney diseases. This field has been growing rapidly as indicated by >80 original research articles on urinary proteome analyses appearing since 2001, of which 28 (approximately 1/3) had been published within the year 2006. The most common technologies used in recent urinary proteome studies remain gel-based methods (1-DE, 2-DE and 2-D DIGE), whereas LC-MS/MS, SELDI-TOF MS, and CE-MS are other commonly used techniques. In addition, mass spectrometric immunoassay (MSIA) and array technology have also been applied. This review provides an extensive but concise summary of recent applications of urinary proteomics. Proteomic analyses of dialysate and ultrafiltrate fluids derived from renal replacement therapy (or artificial kidney) are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号