首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
传统的三角网生长法进行点云数据表面模型重建时,搜索第三点耗时太长,导致重建效率很低。采用自适应八叉树划分算法将点云数据分割成相互覆盖的子域,在每个子域内进行三角网格重建,避免网格拼接的过程;采用最大角最小化原则进行三角网格优化;并运用三角面片定向的方法进行网格法向量一致化处理。实验结果表明,该方法极大地提高了表面模型重建的效率,形成的网格质量也很好,能够较好地体现模型的细节特征,鲁棒性好。  相似文献   

2.
根据非透明物体内部不可见的实际,提出了一种基于图片序列的三维表面重建算法.该算法首先利用传统的八叉树算法重建出物体的三维模型,然后利用一种新颖的表面点提取算法提取出物体表面点,最后利用这些表面点进行三角网格剖分,进而重建出光滑的三维物体表面.在表面点的提取过程中,算法对处于不同状态(处于立方体的顶点、棱、面)的点赋予不...  相似文献   

3.
基于局部重建的点云特征点提取   总被引:2,自引:0,他引:2  
为了有效地提取点云数据中的特征信息,针对采自分片光滑曲面的散乱点云数据,提出一种基于局部重建的鲁棒特征点提取方法.首先基于局部邻域的协方差分析计算每个数据点的特征度量,并通过阈值过滤获取初始特征点集合;然后在每个初始特征点的局部邻域内构建不跨越特征区域,以反映该点局部特征信息的三角形集合;再利用共享近邻算法对构造的三角形法向进行聚类,得到对应局部区域数据点的分类集合;最后对每一类点集拟合平面,通过判断该点是否同时落在多个平面来进行特征点提取.实验结果表明,该方法简单、稳定,对局部邻域选取的大小不敏感,具有一定的抗噪能力;能够在有效提取显著特征的同时,尽可能多地保留相对较弱的特征.  相似文献   

4.
基于八叉树模型的三维点云数据预处理研究   总被引:2,自引:0,他引:2  
三维点云数据密度大,包含有大量的冗余数据,并不适合直接用于后续曲面重构。文中重点计论了基于八叉树模型的点云数据预处理的方法。实例表明,该方法对点云数据处理的灵活性和适应性都较好,能够满足曲线和曲面重构的要求。  相似文献   

5.
三维激光点云数据的可视化研究   总被引:2,自引:0,他引:2  
徐旭东  李泽 《计算机科学》2016,43(Z6):175-178
大量的点云数据是通过三维激光扫描得到的,而点云数据的显示快慢受到了数据索引的直接影响,这是一个基础性问题。经过研究,八叉树与叶节点KD树相结合的混合空间索引结构以及LOD构建的层次细节模型是用来解决点云数据管理与可视化效率不高的问题的有效方法。在局部,通过在叶子节点中构建的KD树实现高效的查询和显示;在全局,为了实现快速检索与调度使用了八叉树模型。采用这种混合数据模型进行点云组织,建立空间索引,并对点云数据进行LOD构建,实现了点云数据的高效检索以及可视化。  相似文献   

6.
点云曲面匹配的八叉树算法   总被引:1,自引:0,他引:1  
针对用点云表示的数字曲面匹配问题,构造了一种采用八叉树和SEPMap匹配的新算法。匹配的最终结果是曲面刚体运动下的不变量。算法不需要待匹配曲面的任何先验知识,不需要进行初始位置猜测,过程中也无需任何交互干预,全部由计算机自动完成。  相似文献   

7.
自适应K-means聚类的散乱点云精简   总被引:1,自引:0,他引:1       下载免费PDF全文
目的 点云精简是曲面重建等点云处理的一个重要前提,针对以往散乱点云精简算法的精简结果存在失真较大、空洞及不适用于片状点云的问题,提出一种自适应K-means聚类的点云精简算法。方法 首先,根据k邻域计算每个数据点的曲率、点法向与邻域点法向夹角的平均值、点到邻域重心的距离、点到邻域点的平均距离,据此运用多判别参数混合的特征提取方法识别并保留特征点,包括曲面尖锐点和边界点;然后,对点云数据建立自适应八叉树,为K-means聚类提供与点云密度分布相关的初始化聚类中心以及K值;最后,遍历整个聚类,如果聚类结果中含有特征点则剔除其中的特征点并更新聚类中心,计算更新后聚类中数据点的最大曲率差,将最大曲率差大于设定阈值的聚类进行细分,保留最终聚类中距聚类中心最近的数据点。结果 在聚类方面,将传统的K-means聚类和自适应K-means聚类算法应用于bunny点云,后者在聚类的迭代次数、评价函数值和时间上均优于前者;在精简方面,将提出的精简算法应用于封闭及片状两种不同类型的点云,在精简比例为1/5时fandisk及saddle模型的精简误差分别为0.29×10-3、-0.41×10-3和0.037、-0.094,对于片状的saddle点云模型,其边界收缩误差为0.030 805,均小于栅格法和曲率法。结论 本文提出的散乱点云精简算法可应用于封闭及片状点云,精简后的数据点分布均匀无空洞,对片状点云进行精简时能够保护模型的边界数据点。  相似文献   

8.
针对非均匀采样点集,提出一种改进的3维表面重建方法。该方法将整个点集进行空间划分,缩小近邻点的搜索范围,减少搜索时间;在确定近邻点时,先计算几何近邻点,然后通过求方向性点并构造最小生成树的方法,确定拓扑近邻点;最后通过将拓扑近邻点投影到局部切平面上,利用约束条件对投影点进行三角剖分,并将剖分得到的顶点连接关系映射到3维空间中,实现3维表面重建。实验结果表明,改进后的算法运行效率高、重建效果好、广泛适用于非均匀采样点集的表面重建。  相似文献   

9.
八叉树结构是三维数据建模中研究和应用最为广泛的栅格数据结构。由于三维扫描的点云数据是基于物体表面的,其空间离散程度远大于三维实体数据,一般的线性八叉树编码压缩方法都是基于实体数据的,不能直接应用于三维点云数据。提出的改进的线性八叉树地址码(Morton码)的方法可大大提高它的连续性,有效降低八叉树的深度,提高数据的压缩比,改进后的Morton码还可以应用多种编码压缩算法进一步压缩。  相似文献   

10.
海量点云的邻域搜索是点云数据处理的关键技术,是对点云进行进一步处理的基础.针对海量点云数据邻域搜索效率较低的问题,提出了一种基于二进制编码八叉树的快速搜索算法.首先构建八叉树,利用一种二进制编码方式对八叉树的各个节点进行编码,即对空间3个维度分别进行编码;其次对邻域点进行查找过程,根据搜索半径直接确定需要搜索的高度;最后在确定的节点高度下,根据编码的特点直接计算所需要查询的邻域节点.实验结果表明,该算法准确性高、速度快,能够实现海量点云数据的快速邻域搜索.  相似文献   

11.
针对大规模散乱点数据k最近邻域搜索速度慢和稳定性差的问题,提出一种新的k邻域快速搜索算法.首先,引入空间分块策略将数据集中的点归入不同的子空间;其次,动态控制搜索步长的改变量,根据点到其自身小立方体边界的最小距离保证搜索结果的准确性;最后,通过改变预筛选点数量的右侧控制阈值来消除已有算法中由于初始数值不当引起的死循环.实验结果表明该算法对初始搜索步长、搜索步长增量、采样密度和不同的拓扑结构具有较强的稳定性,并且能更快地完成k邻域搜索.  相似文献   

12.
Classification of weld flaws with imbalanced class data   总被引:1,自引:0,他引:1  
This paper presents research results of our investigation of the imbalanced data problem in the classification of different types of weld flaws, a multi-class classification problem. The one-against-all scheme is adopted to carry out multi-class classification and three algorithms including minimum distance, nearest neighbors, and fuzzy nearest neighbors are employed as the classifiers. The effectiveness of 22 data preprocessing methods for dealing with imbalanced data is evaluated in terms of eight evaluation criteria to determine whether any method would emerge to dominate the others. The test results indicate that: (1) nearest neighbor classifiers outperform the minimum distance classifier; (2) some data preprocessing methods do not improve any criterion and they vary from one classifier to another; (3) the combination of using the AHC_KM data preprocessing method with the 1-NN classifier is the best because they together produce the best performance in six of eight evaluation criteria; and (4) the most difficult weld flaw type to recognize is crack.  相似文献   

13.
  总被引:2,自引:1,他引:1  
This paper investigates the choice of function approximator for an approximate dynamic programming (ADP) based control strategy. The ADP strategy allows the user to derive an improved control policy given a simulation model and some starting control policy (or alternatively, closed-loop identification data), while circumventing the ‘curse-of-dimensionality’ of the traditional dynamic programming approach. In ADP, one fits a function approximator to state vs. ‘cost-to-go’ data and solves the Bellman equation with the approximator in an iterative manner. A proper choice and design of function approximator is critical for convergence of the iteration and the quality of final learned control policy, because an approximation error can grow quickly in the loop of optimization and function approximation. Typical classes of approximators used in related approaches are parameterized global approximators (e.g. artificial neural networks) and nonparametric local averagers (e.g. k-nearest neighbor). In this paper, we assert on the basis of some case studies and a theoretical result that a certain type of local averagers should be preferred over global approximators as the former ensures monotonic convergence of the iteration. However, a converged cost-to-go function does not necessarily lead to a stable control policy on-line due to the problem of over-extrapolation. To cope with this difficulty, we propose that a penalty term be included in the objective function in each minimization to discourage the optimizer from finding a solution in the regions of state space where the local data density is inadequately low. A nonparametric density estimator, which can be naturally combined with a local averager, is employed for this purpose.  相似文献   

14.
谷峪  于晓楠  于戈 《软件学报》2014,25(8):1806-1816
随着智能移动设备和无线定位技术的飞速发展,使用基于位置服务应用的用户越来越多.特别地,不同于传统的针对固定位置的快照查询,移动的用户往往基于移动轨迹发出连续的查询.在真实和虚拟的空间环境中,障碍物的影响都是广泛存在的,障碍空间内的查询处理技术得到了越来越多的关注,其中,障碍空间内的连续反k近邻查询处理有着重要的应用.对障碍空间中的连续反k近邻查询问题进行了定义和系统的研究,通过定义控制点和分割点,提出了针对该问题的处理框架.进一步地,提出了一系列的过滤和求精算法,包括剪枝数据集、获取障碍物、剪枝和计算控制点和更新结果集等处理策略.基于多种数据集对所提出的算法进行了实验评估.与针对每个数据点进行k 近邻计算的基本方法相比,这些方法可以大幅度提高查询处理的CPU 和I/O 效率.  相似文献   

15.
An associative neural network (ASNN) is a combination of an ensemble of the feed-forward neural networks and the K-nearest neighbor technique. The introduced network uses correlation between ensemble responses as a measure of distance among the analyzed cases for the nearest neighbor technique and provides an improved prediction by the bias correction of the neural network ensemble both for function approximation and classification. Actually, the proposed method corrects a bias of a global model for a considered data case by analyzing the biases of its nearest neighbors determined in the space of calculated models. An associative neural network has a memory that can coincide with the training set. If new data become available the network can provide a reasonable approximation of such data without a need to retrain the neural network ensemble. Applications of ASNN for prediction of lipophilicity of chemical compounds and classification of UCI letter and satellite data set are presented. The developed algorithm is available on-line at http://www.virtuallaboratory.org/lab/asnn.  相似文献   

16.
  总被引:1,自引:1,他引:0  
One of the most important queries in spatio-temporal databases that aim at managing moving objects efficiently is the continuous K-nearest neighbor (CKNN) query. A CKNN query is to retrieve the K-nearest neighbors (KNNs) of a moving user at each time instant within a user-given time interval [t s , t e ]. In this paper, we investigate how to process a CKNN query efficiently. Different from the previous related works, our work relieves the past assumption, that an object moves with a fixed velocity, by allowing that the velocity of the object can vary within a known range. Due to the introduction of this uncertainty on the velocity of each object, processing a CKNN query becomes much more complicated. We will discuss the complications incurred by this uncertainty and propose a cost-effective P2 KNN algorithm to find the objects that could be the KNNs at each time instant within the given query time interval. Besides, a probability-based model is designed to quantify the possibility of each object being one of the KNNs. Comprehensive experiments demonstrate the efficiency and the effectiveness of the proposed approach.
Chiang Lee (Corresponding author)Email:
  相似文献   

17.
异常检测是机器学习与数据挖掘的热点研究领域之一, 主要应用于故障诊断、入侵检测、欺诈检测等领域. 当前已有很多有效的相关研究工作, 特别是基于隔离森林的异常检测方法, 但在处理高维数据时仍然存在许多困难. 提出了一种新的k近邻隔离森林的异常检算法: k-nearest neighbor based isolation forest (KNIF). 该方法采用超球体作为隔离工具, 利用第k近邻的方法来构建隔离森林, 并构建基于距离的异常值计算方法. 通过充分实验表明KNIF方法能有效地进行复杂分布环境下的异常检测, 并能适应不同分布形式的应用场景.  相似文献   

18.
Intrusion detection is a necessary step to identify unusual access or attacks to secure internal networks. In general, intrusion detection can be approached by machine learning techniques. In literature, advanced techniques by hybrid learning or ensemble methods have been considered, and related work has shown that they are superior to the models using single machine learning techniques. This paper proposes a hybrid learning model based on the triangle area based nearest neighbors (TANN) in order to detect attacks more effectively. In TANN, the k-means clustering is firstly used to obtain cluster centers corresponding to the attack classes, respectively. Then, the triangle area by two cluster centers with one data from the given dataset is calculated and formed a new feature signature of the data. Finally, the k-NN classifier is used to classify similar attacks based on the new feature represented by triangle areas. By using KDD-Cup ’99 as the simulation dataset, the experimental results show that TANN can effectively detect intrusion attacks and provide higher accuracy and detection rates, and the lower false alarm rate than three baseline models based on support vector machines, k-NN, and the hybrid centroid-based classification model by combining k-means and k-NN.  相似文献   

19.
加权KNN(k-nearest neighbor)方法,仅利用了k个最近邻训练样本所提供的类别信息,而没考虑测试样本的贡献,因而常会导致一些误判。针对这个缺陷,提出了半监督KNN分类方法。该方法对序列样本和非序列样本,均能够较好地执行分类。在分类决策时,还考虑了c个最近邻测试样本的贡献,从而提高了分类的正确性。在Cohn-Kanade人脸库上,序列图像的识别率提高了5.95%,在CMU-AMP人脸库上,非序列图像的识别率提高了7.98%。实验结果表明,该方法执行效率高,分类效果好。  相似文献   

20.
Bootstrap aggregation, or bagging, is a method of reducing the prediction error of a statistical learner. The goal of bagging is to construct a new learner which is the expectation of the original learner with respect to the empirical distribution function. In nearly all cases, the expectation cannot be computed analytically, and bootstrap sampling is used to produce an approximation. The k-nearest neighbor learners are exceptions to this generalization, and exact bagging of many k-nearest neighbor learners is straightforward. This article presents computationally simple and fast formulae for exact bagging of k-nearest neighbor learners and extends exact bagging methods from the conventional bootstrap sampling (sampling n observations with replacement from a set of n observations) to bootstrap sub-sampling schemes (with and without replacement). In addition, a partially exact k-nearest neighbor regression learner is developed. The article also compares the prediction error associated with elementary and exact bagging k-nearest neighbor learners, and several other ensemble methods using a suite of publicly available data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号