首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ENEA Radiation Protection Institute has been operating the only neutron personal dosimetry service in Italy since the 1970s. Since the 1980s the service has been based on PADC (poly allyl diglycol carbonate) for fast neutron dosimetry, while thermal neutron dosimetry has been performed using thermoluminescence (TL) dosemeters. Since the service was started, a number of aspects have undergone evolution. The latest and most important changes are as follows: in 1998 a new PADC material was introduced in routine, since 2001 TL thermal dosimetry has been based on LiF(Mg,Cu,P) [GR-200] and (7)LiF(Mg,Cu,P) [GR-207] detectors and since 2003 a new image analysis reading system for the fast neutron dosemeters has been used. Herein an updated summary of how the service operates and performs today is presented. The approaches to calibration and traceability to estimate the quantity of H(p)(10) are mentioned. Results obtained at the performance test of dosimetric services in the EU member states and Switzerland sponsored by the European Commission and organised by Eurados in 1999 are reported. Last but not least, quality assurance (QA) procedures introduced in the routine operation to track the whole process of dose evaluation (i.e. plastic QA, acceptance test, test etching bath reproducibility and 'dummy customer' (blind test) for each issuing monitoring period) are presented and discussed.  相似文献   

2.
The novel DIS-1 dosemeter developed by RADOS is based on ionisation chambers with so-called Direct Ion Storage (DIS). The dosemeter can measure Hp(10) and Hp(0.07) of photon and Hp(0.07) of beta irradiation. The characteristics of the commercially available DIS-1 dosemeter were studied at the Paul Scherrer Institute, particularly in respect to the requirements laid down in the Swiss Dosimetry Ordinance. Detailed tests were carried out in terms of linearity, photon and beta responses, angle dependence, long-term stability of the signal, reproducibility and environmental conditions. The DIS-1 dosemeter has been qualified by the authority to conform to the requirements of the Swiss Dosimetry Ordinance for personal photon and beta dosemeters. It is now used as a legally approved personal dosemeter system at PSI.  相似文献   

3.
During the last few years, PTB has developed the electronic dosemeter DOS-2002. It is of an especially simple design (1 silicon detector) and detects the photon and neutron personal dose equivalent with a low detection threshold of 0.016 and 10 microSv, respectively. Its dosimetric characteristics have been determined in neutron fields with energies ranging from thermal energies up to 15 MeV and in photon fields with mean energies from 65 keV to 7 MeV. It can be used in a wide temperature region from -20 degrees C to +50 degrees C, shows almost no interference in electromagetic fields but is still shock sensitive.  相似文献   

4.
An advanced-type small, light, multi-functional electronic personal dosemeter has been developed using silicon semiconductor radiation detectors for dose management of workers at nuclear power plants and accelerator facilities. This dosemeter is 62 x 82 x 27 mm(3) in size and approximately 130 g in weight, which is capable of measuring personal gamma ray and neutron dose equivalents, Hp(10), simultaneously. The neutron dose equivalent can be obtained using two types of silicon semiconductors: a slow-neutron sensor (<1 MeV) and a fast-neutron sensor (>1 MeV). The slow neutron sensor is a 10 x 10 mm(2) p-type silicon on which a natural boron layer is deposited around an aluminium electrode. The fast neutron sensor is also a 10 x 10 mm(2) p-type silicon crystal on which an amorphous silicon hydride is deposited. The neutron energy response corresponding to the fluence-to-dose-equivalent conversion coefficient given by ICRP Publication 74 has been evaluated using a monoenergetic neutron source from 250 keV to 15 MeV at the Fast Neutron Laboratory of Tohoku University. As the result, the Hp(10) response to neutrons in the energy range of 250 keV and 4.4 MeV within +/-50% difference has been obtained.  相似文献   

5.
The fast neutron energy dependence of response of the HPA PADC neutron personal dosemeter has been measured from 144 keV to 19 MeV using monoenergetic neutron fields. Below 144 keV the relative energy and angle dependence of response have been determined using MCNP-4C2. New data from the SIGMA field at Cadarache, France, have been used to determine the appropriate scaling factor for the calculated response to thermal and intermediate energy neutrons. These newly determined response characteristics of the dosemeter are discussed with respect to its performance in the EVIDOS workplace field irradiations.  相似文献   

6.
A CMOS active pixel sensor, originally designed for the tracking of minimum ionising charged particles in high-energy physics, has been recently used for the detection of fast neutrons. Data were taken at the IRSN Cadarache facility with a (241)Am-Be ISO source and a polyethylene radiator. A high-intrinsic efficiency (1.2 x 10(-3)) has been obtained. It is in good agreement with both calculations and a MCNPX Monte Carlo simulation. This experiment paves the way for a fully electronic personal neutron dosemeter.  相似文献   

7.
The monitoring of radon exposure at workplaces is of great importance. Up to now passive measurement systems have been used for the registration of radon gas. Recently an electronic radon gas personal dosemeter came onto the market as an active measurement system for the registration of radon exposure (DOSEman; Sarad GmbH, Dresden, Germany). In this personal monitor, the radon gas diffuses through a membrane into a measurement chamber. A silicon detector system records spectroscopically the alpha decays of the radon gas and of the short-lived progeny 218Po and 214Po gathered onto the detector by an electrical field. In this work the calibration was tested and a proficiency test of this equipment was made. The diffusion behaviour of the radon gas into the measurement chamber, susceptibility to thoron, efficiency, influence of humidity, accuracy and the detection limit were checked.  相似文献   

8.
Within the EC project EVIDOS ('Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields'), different types of active neutron personal dosemeters (and some passive ones) were tested in workplace fields at nuclear installations in Europe. The results of the measurements which have been performed up to now are summarised and compared to our currently best estimates of the personal dose equivalent Hp(10). Under- and over-readings by more than a factor of two for the same dosemeter in different workplace fields indicate that in most cases the use of field-specific correction factors is required.  相似文献   

9.
Variations in the energy dependence of response of neutron personal dosemeters cause systematic errors in the readings obtained in workplace fields. The magnitude of these errors has been determined theoretically by folding measured and calculated workplace energy distributions with dosemeter response functions, to determine the response of a given personal dosemeter in that field. These results have been analysed with consideration of the dosemeter response to various calibration spectra, and with reference to different workplaces. The dosemeters in the study are discussed in terms of the workplaces for which they can be suitably calibrated. Deficiencies in the published neutron energy distributions are identified.  相似文献   

10.
MOSFET dosemeters are emerging as a versatile tool in various medical physics and health physics dose measurements. It is an important but difficult task to understand their energy and directional dependences because of their unique features. This paper presents a study to characterise a MOSFET dosemeter using Monte Carlo simulation method. Monoenergetic photon beams ranging from 15 to 6 MeV were simulated to study the energy and angular dependences. The results were compared with published experimental data. The Monte Carlo model also provided insightful information on optimising the dosemeter design by examining how various regions of the dosemeter contributed to the dose. Detailed energy deposition processes were further analysed by tracking individual particles inside the dosemeter.  相似文献   

11.
In this paper the present status of the Direct Ion Storage Neutron (DIS-N) prototype dosemeter (RADOS) is described. The separation of neutron from photon dose equivalent has been improved by adding tin shieldings. The neutron energy response has been changed by additional plastic covers containing 40% B4C in order to reduce the over-response to thermal neutrons. The responses of the dosemeters were determined for standard photon and neutron fields (monoenergetic neutrons, neutron sources and simulated workplace fields). Irradiations in real workplaces were also performed. The dependence of the neutron response on the angle of incidence was measured for different neutron sources.  相似文献   

12.
TRIPOLI-4.3 Monte Carlo transport code has been used to evaluate the QUADOS (Quality Assurance of Computational Tools for Dosimetry) problem P4, neutron and photon response of an albedo-type thermoluminescence personal dosemeter (TLD) located on an ISO slab phantom. Two enriched 6LiF and two 7LiF TLD chips were used and they were protected, in front or behind, with a boron-loaded dosemeter-holder. Neutron response of the four chips was determined by counting 6Li(n,t)4He events using ENDF/B-VI.4 library and photon response by estimating absorbed dose (MeV g(-1)). Ten neutron energies from thermal to 20 MeV and six photon energies from 33 keV to 1.25 MeV were used to study the energy dependence. The fraction of the neutron and photon response owing to phantom backscatter has also been investigated. Detailed TRIPOLI-4.3 solutions are presented and compared with MCNP-4C calculations.  相似文献   

13.
The response of the Defence Science and Technology Laboratory (DSTL) PADC personal neutron dosemeter is strongly dependent upon neutron energy, with a range of 300-500 tracks per cm2 per mSv for energies between 1 and 5 MeV. Below 1 MeV the response drops off sharply. This lack of sensitivity is undesirable when the dosemeter is employed with the softened fission spectra encountered in the workplace. In order to incorporate a thermal response, a polypropylene converter doped with LiF has been placed directly in front of the PADC elements. Tritons produced in the thermal neutron reaction 6Li (n,t)alpha at 2.7 MeV will then penetrate the PADC, leaving a trail of damage. The reaction rate within the converter has been calculated using MCNP for thermal neutrons and a range of higher energies, while transport of the tritons is modelled using the SRIM/TRIM package to determine the resultant track density and depth distribution. The modelling and experimental work have demonstrated that a concentration of 0.2% natural lithium by weight results in a track density in a thermal field comparable with that produced per unit personal dose equivalent by neutrons greater than 1 MeV in the standard dosemeter. Additional MCNP modelling has demonstrated that the dosemeters' albedo response to intermediate energy neutrons can be enhanced considerably by placing a boron-doped shield in front of the converter and increasing its lithium concentration.  相似文献   

14.
The aim of this study was to investigate the use of an electronic personal dosemeter (EPD) worn by a senior cardiologist in an Interventional Cardiology (IC) Laboratory of a busy cardiac centre and how the results could help in the evaluation of radiation protection equipment used. Patient samples consist of 28 patients (10 coronary angiographies (CAs) and 18 percutaneous transluminal coronary angioplasties (PTCAs)). Patient dose was measured with a dose-area product (DAP) meter. Cardiologist radiation dose value written on the EPD as well as the protective equipment used was collected. Between patient and cardiologist dose, a significant correlation was found in CA and a moderate correlation in PTCA. Mean cardiologist effective dose E per procedure was found to be 0.2 microSv in CA and 0.3 microSv in PTCA. EPD proved to be an easy, direct and straightforward way to measure the radiation dose that the cardiologist receives in an IC laboratory.  相似文献   

15.
The calculated dose equivalent response as a function of the angle has been examined for the radiophotoluminescent (RPL) glass dosemeter that was exposed to narrow series X-ray, N-60, N-80, N-100, N-150, N-200, N-250, N-300, photon sources ((60)Co and (137)Cs) and beta-ray emitter ((90)Sr/(90)Y) while mounted on an ISO water slab phantom. The angular dose equivalent responses H(p)(10) and H(p)(0.07) were calculated using the Monte Carlo MCNPX code. The RPL dosemeter and the phantom were rotated in the horizontal and vertical planes from a variety of angles of interest. The results were compared with the experimental data. Good agreement was found between the measured and calculated values of the relative dose equivalent angular responses of the RPL dosemeter.  相似文献   

16.
In order to develop an active-type personal dosemeter having suitable sensitivity to high-energy neutrons, the characteristic response of silicon surface barrier detector has been investigated experimentally and theoretically. An agreement of the shape of pulse-height distribution, its change with radiator thickness and the relative sensitivity was confirmed between the calculated and experimental results for 14.8-MeV neutrons. The angular dependence was estimated for other neutron energies, and found that the angular dependence decreased with the incident energy. The reason was also discussed with regard to the radiator thickness relative to maximum range of recoil protons.  相似文献   

17.
The Hp(10) energy response of the personal dosemeter Seibersdorf and its two different filtered LiF:Mg,Ti (TLD-100) thermoluminescence (TL) detectors are investigated. A close-to-reality simulation model of the personal dosemeter badge including the wrapped detector card was implemented with the MCNP Monte Carlo N-particle transport code. The comparison of measured and computationally calculated response using a semi-empirical TL efficiency function is carried out to provide information about the quality of the results of both methods, experiment and simulation. Similar to the experimental calibration conditions, the irradiation of dosemeters centred on the front surface of the International Organization for Standardization (ISO) water slab phantom is simulated using ISO-4037 reference photon radiation qualities with mean energies between 24 keV and 1.25 MeV and corresponding ISO conversion coefficients. The comparison of the simulated and measured relative Hp(10) energy responses resulted in good agreement within some percent except for the filtered TL element at lower photon energies.  相似文献   

18.
This paper mainly aims at presenting the measurements and the results obtained with the electronic personal neutron dosemeter Saphydose-N at different facilities. Three campaigns were led in the frame of the European contract EVIDOS ('Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields'). The first one consisted in the measurements at the IRSN French research laboratory in reference neutron fields generated by a thermal facility (SIGMA), radionuclide ISO sources ((241)AmBe; (252)Cf; (252)Cf(D(2)O)\Cd) and a realistic spectrum (CANEL/T400). The second one was performed at the Krümmel Nuclear Power Plant (Germany) close to the boiling water reactor and to a spent fuel transport cask. The third one was realised at Mol (Belgium), at the VENUS Research Reactor and at Belgonucléaire, a fuel processing factory.  相似文献   

19.
The availability of low cost personal dosemeters is very important for routine worker monitoring. The aim of this work is to evaluate the performance of commercial silicon diodes, commonly used for infrared communication, as a personal radiation monitor. The instrument prototype was characterised both as an area monitor and a personal monitor. Instrument response was measured in the energy range form 37 keV to (60)Co energy. The angular response was also evaluated too.  相似文献   

20.
In August 2009, almost 1000 passive extremity dosemeters were irradiated at the Dosimetry Laboratory Seibersdorf as part of the EURADOS intercomparison IC2009. Forty-four European individual monitoring services participated, with a total of 59 dosimetry systems (46 finger ring, 4 finger tip and 9 wrist/ankle dosemeter systems). Additionally, finger-ring dosemeters from the Dosimetry Service Seibersdorf were irradiated in a non-competitive manner. Dosemeter irradiations on rod and pillar phantoms in four photon-radiation fields complying with the ISO standard 4037 were performed with personal dose equivalent values (H(p)(0.07)) ranging from 4 to 480 mSv. Traceability was established by using an air-kerma-calibrated monitor ionisation chamber together with the X-ray facility as well as a calibrated (137)Cs gamma radiation field with a collimated beam geometry. The ISO-tabulated conversion coefficients from air kerma free-in-air to H(p)(0.07) were applied, resulting in the main contribution to the expanded measurement uncertainties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号