首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review is the fifth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2008. The first section of the review covers fundamental studies, fragmentation of carbohydrate ions, use of derivatives and new software developments for analysis of carbohydrate spectra. Among newer areas of method development are glycan arrays, MALDI imaging and the use of ion mobility spectrometry. The second section of the review discusses applications of MALDI MS to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, biopharmaceuticals, glycated proteins, glycolipids, glycosides and various other natural products. There is a short section on the use of MALDI mass spectrometry for the study of enzymes involved in glycan processing and a section on the use of MALDI MS to monitor products of the chemical synthesis of carbohydrates with emphasis on carbohydrate-protein complexes and glycodendrimers. Corresponding analyses by electrospray ionization now appear to outnumber those performed by MALDI and the amount of literature makes a comprehensive review on this technique impractical. However, most of the work relating to sample preparation and glycan synthesis is equally relevant to electrospray and, consequently, those proposing analyses by electrospray should also find material in this review of interest.  相似文献   

2.
This review is the fourth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2006. The review covers fundamental studies, fragmentation of carbohydrate ions, method developments, and applications of the technique to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N‐ and O‐linked glycans from glycoproteins, glycated proteins, glycolipids from bacteria, glycosides, and various other natural products. There is a short section on the use of MALDI‐TOF mass spectrometry for the study of enzymes involved in glycan processing, a section on industrial processes, particularly the development of biopharmaceuticals and a section on the use of MALDI–MS to monitor products of chemical synthesis of carbohydrates. Large carbohydrate–protein complexes and glycodendrimers are highlighted in this final section. © 2010 Wiley Periodicals, Inc., Mass Spec Rev 30:1–100, 2011  相似文献   

3.
4.
The occurrence of multiple glycosylation sites on a protein, together with the number of glycan structures which could potentially be associated with each site (microheterogeneity) often leads to a large number of structural combinations. These structural variations increase with the molecular size of a protein, thus contributing to the complexity of glycosylation patterns. Resolving such fine structural differences has been instrumentally difficult. The degree of glycoprotein microheterogeneity has been analytically challenging in the identification of unique glycan structures that can be crucial to a distinct biological function. Despite the wealth of information provided by the most powerful mass spectrometric (MS) and tandem MS techniques, they are not able to readily identify isomeric structures. Although various separation methods provide alternatives for the analysis of glycan pools containing isomeric structures, capillary electrophoresis (CE) is often the method of choice for resolving closely related glycan structures because of its unmatched separation efficiency. It is thus natural to consider combining CE with the MS-based technologies. This review describes the utility of different CE approaches in the structural characterization of glycoproteins, and discusses the feasibility of their interface to mass spectrometry.  相似文献   

5.
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.  相似文献   

6.
Lectin histochemistry is a useful method that allows the in situ identification of the terminal sugar moieties of the carbohydrates that form the glycoconjugates. Moreover, when it is combined with chemical or enzymatic deglycosylation pretreatments, lectin histochemistry can be employed to determine if carbohydrates are linked to the protein core by means of an N- or O-glycosidic linkage or, indeed, to partially sequence the sugar chains. One of the most interesting model organs for the study of spermatogenesis is the amphibian urodele testis. However, this organ has not been very widely investigated with lectin histochemical research. In the last few years, we have carried out a research project to identify and locate glycoconjugates in the testis of the urodele Pleurodeles waltl, the Spanish newt, as a first approach to identify possible carbohydrates with key roles in spermatogenesis. Our findings reveal some glycan chains located in a fusome-like structure in early (diploid) germ cells, oligosaccharides with terminal GalNAc in the acrosome, the occurrence of glycan modifications in the acrosomal contents during spermiogenesis, and changes in glycan composition of follicle and interstitial cells during the spermatogenetic cycle. Furthermore, the similar labeling pattern of follicle and duct cells supports the hypothesis for a common origin of both cell types.  相似文献   

7.
Liranaftate的傅立叶变换-离子回旋共振质谱研究   总被引:1,自引:0,他引:1  
陆豪杰  张芳  郭寅龙 《质谱学报》2003,24(3):403-403
用傅立叶变换 -离子回旋共振质谱 (FT/ ICRMS)和傅立叶变换 -离子回旋共振串级质谱 (FT/ ICRMSn,n=2 )研究新药 Liranaftate的裂解机理 ,探讨了相应的碎裂方式和机理 ,发现了该化合物的一个七元环重排裂解规律 ,给出了相应的准确分子量测定数据加以证实 ,同时也对比了 EI和 MAL DI两种不同离子化方式所得到的质谱结果 ,进一步证实了该重排是一个通过 Liranaftate吡啶环上氮原子的七元环重排。  相似文献   

8.
Mass spectrometry of oligosaccharides   总被引:12,自引:0,他引:12  
Glycosylation is a common post-translational modification to cell surface and extracellular matrix (ECM) proteins as well as to lipids. As a result, cells carry a dense coat of carbohydrates on their surfaces that mediates a wide variety of cell-cell and cell-matrix interactions that are crucial to development and function. Because of the historical difficulties with the analysis of complex carbohydrate structures, a detailed understanding of their roles in biology has been slow to develop. Just as mass spectrometry has proven to be the core technology behind proteomics, it stands to play a similar role in the study of functional implications of carbohydrate expression, known as glycomics. This review summarizes the state of knowledge for the mass spectrometric analysis of oligosaccharides with regard to neutral, sialylated, and sulfated compound classes. Mass spectrometric techniques for the ionization and fragmentation of oligosaccharides are discussed so as to give the reader the background to make informed decisions to solve structure-activity relations in glycomics.  相似文献   

9.
The implication of galactosides and other glycoconjugates on spermatogenesis has been previously reported. Glycans show such a complex structure that it makes them very difficult to analyze. Lectin histochemistry is a helpful tool for the study of glycan composition. Lectin histochemistry can be combined with deglycosylation pretreatments to explore the glycan type to which carbohydrates are linked. The aim of the present work was the localization of galactose (Gal)-containing glycoconjugates in the testis of Xenopus laevis, a species widely used in cell, molecular and developmental biology. Gal specific lectins BPL, PNA, BSI-B4, MAA-I, and RCA-I, were used in combination with deglycosylation procedures. Except for BPL, all the lectins were reactive for several testicular tissues. Some of the lectins showed a different reactivity depending on the stage of spermatogenic development, suggesting that cell glycoconjugates are modified during spermatogenesis. The surface of primary spermatocytes was strongly labeled with lectins from peanut (PNA) and castor bean (RCA-I), which agrees with the presence of galactosyl-glycolipids reported in the cell membrane of mammalian spermatocytes. The acrosome was unexpectedly negative to all the lectins tested, whereas the acrosome of mammals and other amphibians has shown a high expression of glycoconjugates, including galactosides. The results obtained after deglycosylation by β-elimination or incubation with PNGase F, which respectively remove O- and N-linked oligosaccharides, allowed us to elucidate the nature of the labeled glycans. The strong expression of galactosides at the cell surface of spermatocytes and spermatids suggests the involvement of these glycans in cell adhesion mechanisms during spermatogenesis.  相似文献   

10.
本文综述电荷交换反应的类型、电荷交换反应质谱技术的基本原理及其在双电荷离子质谱研究中的具体应用。  相似文献   

11.
This review is the second update of the original review on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates that was published in 1999. It covers fundamental aspects of the technique as applied to carbohydrates, fragmentation of carbohydrates, studies of specific carbohydrate types such as those from plant cell walls and those attached to proteins and lipids, studies of glycosyl-transferases and glycosidases, and studies where MALDI has been used to monitor products of chemical synthesis. Use of the technique shows a steady annual increase at the expense of older techniques such as FAB. There is an increasing emphasis on its use for examination of biological systems rather than on studies of fundamental aspects and method development and this is reflected by much of the work on applications appearing in tabular form.  相似文献   

12.
13.
陈海霞  高文远 《质谱学报》2005,26(2):108-108
综述了基质辅助激光解吸电离-飞行时间质谱(MALDI-TOF-MS)的发展、在糖类化合物结构研究时常选用的基质,以及在不同类型糖化合物分析中的应用。MALDI-TOF-MS在糖类分析中通常采用的是N2激光源,基质多为有机小分子如2,5-二羟基苯甲酸、2,4,5-三羟基苯乙酮、1-羟基异喹啉或2-羟基-5-甲氧基苯甲酸、α-氰基-4-羟基-苯丙烯酸等,基质类型的选择则要取决于糖类的存在形式。糖类化合物如中性糖、酸性糖、硫酸化糖、糖蛋白、蛋白聚糖及糖脂等均可利用适合的基质而进行MALDI-TOF-MS分析。  相似文献   

14.
Protein glycosylation plays an important role in a multitude of biological processes such as cell–cell recognition, growth, differentiation, and cell death. It has been shown that specific glycosylation changes are key in disease progression and can have diagnostic value for a variety of disease types such as cancer and inflammation. The complexity of carbohydrate structures and their derivatives makes their study a real challenge. Improving the isolation, separation, and characterization of carbohydrates and their glycoproteins is a subject of increasing scientific interest. With the development of new stationary phases and molecules that have affinity properties for glycoproteins, the isolation and separation of these compounds have advanced significantly. In addition to detection with mass spectrometry, the microarray platform has become an essential tool to characterize glycan structure and to study glycosylation‐related biological interactions, by using probes as a means to interrogate the spotted or captured glycosylated molecules on the arrays. Furthermore, the high‐throughput and reproducible nature of microarray platforms have been highlighted by its extensive applications in the field of biomarker validation, where a large number of samples must be analyzed multiple times. This review covers a brief survey of the other experimental methodologies that are currently being developed and used to study glycosylation and emphasizes methodologies that involve the use of microarray platforms. This review describes recent advances in several options of microarray platforms used in glycoprotein analysis, including glycoprotein arrays, glycan arrays, lectin arrays, and antibody/lectin arrays. The translational use of these arrays in applications related to characterization of cells and biomarker discovery is also included. © 2010 Wiley Periodicals, Inc., Mass Spec Rev 29:830–844, 2010  相似文献   

15.
傅桂香  俞璐 《质谱学报》1994,15(2):68-76
本文报道α、β不饱和酮和酰胺的二茂铁衍生物的电子轰击质谱(EIMS),并利用高分辨质谱(HRMS)数据和MS/MS联用技术研究了该类化合物的裂解规律,还研究了直接进样探头温度对谱图的影响。  相似文献   

16.
研究了以2(3H)-苯并唑酮为端基、具有酰脲结构的非环多醚化合物的质谱。各化合物呈现出相似的质谱峰。M+1离子可以进行McLafferty重排,其碎片离子(m/z207)也可以进行McLafferty重排.此外,碎片离子(m/z207)的McLafferty重排产物(m/z177)又进行了新的甲基重排反应。  相似文献   

17.
This review is the third update of the original review, published in 1999, on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings the topic to the end of 2004. Both fundamental studies and applications are covered. The main topics include methodological developments, matrices, fragmentation of carbohydrates and applications to large polymeric carbohydrates from plants, glycans from glycoproteins and those from various glycolipids. Other topics include the use of MALDI MS to study enzymes related to carbohydrate biosynthesis and degradation, its use in industrial processes, particularly biopharmaceuticals and its use to monitor products of chemical synthesis where glycodendrimers and carbohydrate-protein complexes are highlighted.  相似文献   

18.
The ability to form multiply charged high-mass ions in the gas-phase, most notably via electrospray ionization (ESI), has allowed the study of many different combinations of positively and negatively charged ions. The charged products are directly amenable to study with mass spectrometry. Ion/ion reactions have proved to be "universal" in the sense that the high exothermicities and large rate constants associated with essentially any combination of oppositely charged ions lead to reaction regardless of the chemical functionalities associated with the ions. These characteristics make ion/ion reactions potentially analytically useful provided reagent ion densities and spatial overlap of the oppositely charged ions are high. These conditions can be readily met by several instrumental configurations. The focus of this review is to highlight developments in this field since 1998. Novel instrumentation has been developed to study ion/ion reactions, such as atmospheric pressure ion/ion reactors followed by mass analysis, or electrodynamic ion trap mass spectrometers, which are used as reaction vessels at sub-atmospheric pressures. A wide variety of reaction phenomenologies have been observed in various ion/ion reactions, with proton transfer being the most common. New phenomenologies have been observed in the reactions of multiply charged positive ions with singly charged negative ions, including cation transfer and cation exchange. A new series of reactions between multiply charged positive ions and multiply charged negative ions have been made possible by recent instrumentation developments. These reactions have led to the observation of proton transfer and complex formation. These observations have provided new insights into ion/ion reaction dynamics and a bound orbit model appears to best account for experimental results. New applications are also discussed for a several ion/ion reaction.  相似文献   

19.
Electrospray and matrix assisted laser desorption ionization generate abundant molecular ion species from all known lipids that have long chain fatty acyl groups esterified or amidated to many different polar headgroup features. Molecular ion species include both positive ions from proton addition [M+H](+) and negative ions from proton abstraction [M-H](-) as well as positive ions from alkali metal attachment and negative ions from acetate or chloride attachment. Collisional activation of both MALDI and ESI behave very similarly in that generated molecular species yield product ions that reveal many structural features of the fatty acyl lipids that can be detected in tandem mass spectrometric experiments. For many lipid species, collision induced dissociation of the positive [M+H](+) reveals information about the polar headgroup, while collision induced dissociation of the negative [M-H](-) provides information about the fatty acyl chain. The mechanisms of formation of many of these lipid product ions have been studied in detail and many established pathways are reviewed here. Specific examples of mass spectrometric behavior of several molecular species are presented, including fatty acids, triacylglycerol, phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidylglycerol, ceramide, and sphingomeylin.  相似文献   

20.
多肽及蛋白质质谱分析新进展   总被引:6,自引:0,他引:6  
多肽和蛋白质的结构分析常用化学及生物化学降解法,近年来运用质谱法日益增多,本文简要综述质谱新技术,如快原子轰击电离、串联质谱、电喷雾质等应用于多肽和蛋白质分子量测定及序列分析的新进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号