首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Severe low-renin hypertension has few known causes. Apparent mineralocorticoid excess (AME) is a genetic disorder that results in severe juvenile low-renin hypertension, hyporeninemia, hypoaldosteronemia, hypokalemic alkalosis, low birth weight, failure to thrive, poor growth, and in many cases nephrocalcinosis. In 1995, it was shown that mutations in the gene (HSD11B2) encoding the 11beta-hydroxysteroid dehydrogenase type 2 enzyme (11beta-HSD2) cause AME. Typical patients with AME have defective 11beta-HSD2 activity, as evidenced by an abnormal ratio of cortisol to cortisone metabolites and by an exceedingly diminished ability to convert [11-3H]cortisol to cortisone. Recently, we have studied an unusual patient with mild low-renin hypertension and a homozygous mutation in the HSD11B2 gene. The patient came from an inbred Mennonite family, and though the mutation identified her as a patient with AME, she did not demonstrate the typical features of AME. Biochemical analysis in this patient revealed a moderately elevated cortisol to cortisone metabolite ratio. The conversion of cortisol to cortisone was 58% compared with 0-6% in typical patients with AME whereas the normal conversion is 90-95%. Molecular analysis of the HSD11B2 gene of this patient showed a homozygous C-->T transition in the second nucleotide of codon 227, resulting in a substitution of proline with leucine (P227L). The parents and sibs were heterozygous for this mutation. In vitro expression studies showed an increase in the Km (300 nM) over normal (54 nM). Because approximately 40% of patients with essential hypertension demonstrate low renin, we suggest that such patients should undergo genetic analysis of the HSD11B2 gene.  相似文献   

2.
CONVERSION OF CORTISOL TO CORTISONE: 11 beta-Hydroxysteroid dehydrogenase (11 beta-HSD) is a microsomal enzyme complex which, in humans, catalyses the interconversion between biologically active cortisol and inactive cortisone. This prereceptor signalling mechanism is essential for maintaining the aldosterone selectivity of the intrinsically non-specific mineralocorticoid receptor and for modulating glucocorticoid access to the glucocorticoid receptor. Apparent mineralocorticoid excess (AME) is a syndrome of severe low-renin mineralocorticoid hypertension associated with marked hypokalaemia which arises from a congenital deficiency of 11 beta-HSD. In AME patients, therefore, it is cortisol and not aldosterone which behaves as a potent mineralocorticoid. ISOFORMS OF 11 BETA-HSD: Two isoforms of human 11 beta-HSD have now been characterized and cloned. The type 1 isoform (11 beta-HSD1) is a low-affinity reduced nicotinamide adenine dinucleotide phosphate (NADP) dependent dehydrogenase-oxoreductase which is expressed in predominantly glucocorticoid target tissues and the encoding sequence of which is normal in patients with AME. In contrast, the type 2 isoform (11 beta-HSD2) is a high-affinity NADP-dependent unidirectional dehydrogenase which is expressed in placenta and mineralocorticoid target tissues such as renal collecting ducts and distal colonic epithelia. Exon- and intron-specific polymerase chain reaction amplification of the 11 beta-HSD2 gene from genomic DNA from members of a consanguinous kindred with AME consistently revealed a single missense mutation (C1228T) in two affected sibs and twin stillbirths. This mutation in codon 374 of exon 5 of the 11 beta-HSD2 gene creates an inframe premature stop (TGA) and, as such, results in a truncated 11 beta-HSD2 protein lacking the carboxyl-terminal proline-rich 32 amino acids. In keeping with an autosomal recessive mode of inheritance, both parents were phenotypically and biochemically normal but were heterozygous for this mutation. Unique to this kindred were expression analyses of the native mutant 11 beta-HSD2 enzyme in the stillbirth-affected placenta, which was almost completely devoid of NADP-dependent 11 beta-dehydrogenase activity. Immunohistochemical and Western blot analyses revealed the absence of 11 beta-HSD2 protein using antisera raised against synthetic peptide sequences corresponding either to the carboxyl terminus or other domains of the enzyme. MISSENSE MUTATION: In this kindred with AME, congenital deficiency of 11 beta-HSD activity is due to a single missense mutation in exon 5 of the 11 beta-HSD2 gene. Simultaneous studies by two other groups have similarly revealed no gross deletions or rearrangements of the 11 beta-HSD2 gene, but have described a number of single point mutations and oligonucleotide deletions in exons 3, 4 and 5, and adjacent to a splice site in intron 3. Recombinant expression analysis of site-directed mutant 11 beta-HSD2 complementary DNA constructs suggests a correlation between the predicted severity of these mutations and the biochemical and clinical phenotype. AME AS A CAUSE OF HYPERTENSION: The mutations in the 11 beta-HSD2 gene, together with those currently being sought by us for other kindreds with AME, establishes AME as a monogenic cause of human hypertension and will provide insight into the structure-function relationships of this important enzyme.  相似文献   

3.
Both cortisol and aldosterone bind to and activate the mineralocorticoid receptor. Cortisol concentrations are generally 100- to 200-fold higher than aldosterone concentrations, yet mineralocorticoids clearly exert effects different from glucocorticoids. One hypothesis is that 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD), which converts cortisol to biologically inactive cortisone, protects the mineralocorticoid receptor from cortisol. The circulating concentrations of cortisol in the squirrel monkey are 20- to 50-fold higher than human cortisol concentrations, yet this animal has no evidence of glucocorticoid or mineralocorticoid excess. We used this experiment of nature to test the hypotheses that the known (hepatic) form of 11 beta-HSD protects renal mineralocorticoid receptors from the action of cortisol and that it modulates glucocorticoid concentrations in target tissues. Using a long oligonucleotide based on the rat sequence, we cloned the squirrel monkey 11 beta-HSD complementary DNA and gene. The encoded monkey amino acid sequence is 75% and 91% identical to the corresponding rat and human sequences, respectively. The tissue abundance of the messenger RNA for the monkey enzyme was similar to or less than that seen for the rat and human enzymes. Both the monkey and human 11 beta-HSD complementary DNAs were cloned into an expression vector and used to transfect cultures of Chinese hamster ovary cells. Both vectors were transcribed and translated into equivalent amounts of 11 beta-HSD enzyme. The monkey enzyme was slightly more efficient than the human enzyme in converting [3H]cortisol to cortisone, and estimates of the Michaelis-Menten constant and maximum velocity of both enzymes are similar. These data indicate that the abundance and activity of the hepatic form of 11 beta-HSD are insufficient to inactivate the very high concentrations of cortisol in the squirrel monkey, suggesting that this form of 11 beta-HSD does not defend the mineralocorticoid receptor or protect tissues from high cortisol concentrations. Rather, this enzyme appears to favor conversion of cortisone to cortisol, thus maximizing tissue concentrations of cortisol to overcome glucocorticoid resistance associated with a 50% reduction in glucococorticoid receptors.  相似文献   

4.
Although oxidation of cortisol or corticosterone by 11beta-hydroxysteroid dehydrogenase (11beta-HSD) represents the physiological mechanism conferring specificity for aldosterone on the mineralocorticoid receptor in mineralocorticoid target tissues, little attention has been paid until now to the expression and activity of this enzyme in human adrenals. We have shown that human adrenal cortex expresses 11beta-HSD type 2 (11beta-HSD2) gene, and found a marked 11beta-HSD2 activity in microsomal preparations obtained from slices of decapsulated normal human adrenal cortices. Under basal conditions, adrenal slices secreted, in addition to cortisol and corticosterone (B), sizeable amounts of cortisone and 11-dehydrocorticosterone (DH-B), the inactive forms to which the former glucocorticoids are converted by 11beta-HSD. Addition of the 11beta-HSD inhibitor glycyrrhetinic acid elicited a moderate rise in the production of cortisol and B and suppressed that of cortisone and DH-B. ACTH and angiotensin II evoked a marked rise in the secretion of cortisol and B, but unexpectedly depressed the release of cortisone and DH-B. ACTH also lowered the capacity of adrenal slices to convert [3H]cortisol to [3H]cortisone. This last effect of ACTH was concentration-dependently abolished by both aminoglutethimide and cyanoketone, which blocks early steps of steroid synthesis, but not by metyrapone, an inhibitor of 11beta-hydroxylase. Collectively, these findings indicate that the human adrenal cortex possesses an active 11beta-HSD2 engaged in the inactivation of newly formed glucocorticoids. The activity of this enzyme is negatively modulated by the main agonists of glucocorticoid secretion through an indirect mechanism, probably involving the rise in the intra-adrenal concentration of non-11beta-hydroxylated steroid hormones.  相似文献   

5.
6.
Apparent mineralocorticoid excess and licorice induced hypertension, both hypertensive disorders, have been attributed to a defect in the enzyme 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD), which interconverts cortisol to cortisone. Therefore, we undertook this study to determine the role of human placental 11 beta-HSD activity in preeclampsia, which is a hypertensive disorder in pregnancy. 11 beta-HSD activities were determined in placentas of 17 normotensive and 11 preeclamptic patients matched for gestational age at 34-42 weeks. Cortisol levels in umbilical venous and arterial sera were also determined for both groups. Statistical analysis was performed using Student's t-test, significance at p < 0.05. 11 beta-dehydrogenase (oxidation activity of 11 beta-HSD) activity was significantly lower in placentas of preeclamptic compared to normotensive patients (0.19 +/- 0.09 vs. 0.26 +/- 0.08 mmoles/min/placenta, p = 0.02). Cortisol level in umbilical cord blood was significantly higher in the preeclamptic group (14.99 +/- 14.08 vs. 6.71 +/- 3.69 g/dL, p = 0.02). The decreased 11 beta-HSD activity is accompanied by an expected increase in umbilical cord blood cortisol level and decrease in fetal weight. This enzyme may play an important role in influencing fetal growth.  相似文献   

7.
Aldosterone, the most important mineralocorticoid, regulates electrolyte excretion and intravascular volume mainly through its effects on renal distal convoluted tubules and cortical collecting ducts. Excess secretion of aldosterone or other mineralocorticoids or abnormal sensitivity to mineralocorticoids may result in hypertension, suppressed plasma renin activity, and hypokalemia. Such conditions often have a genetic basis, and studies of these conditions have provided valuable insights into the normal and abnormal physiology of mineralocorticoid action. Deficiencies of steroid 11 beta-hydroxylase or 17 alpha-hydroxylase are types of congenital adrenal hyperplasia, the autosomal recessive inability to synthesize cortisol. These two defects often cause hypertension because of overproduction of cortisol precursors that are, or are metabolized to, mineralocorticoid agonists. These disorders result from mutations in the CYP11B1 and CYP17 genes encoding the corresponding enzymes. Glucocorticoid-suppressible hyperaldosteronism is an autosomal dominant form of hypertension in which aldosterone secretion is abnormally regulated by corticotropin. It is caused by recombinations between linked genes encoding closely related isozymes, 11 beta-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2), generating a dysregulated chimeric gene with aldosterone synthase activity. Apparent mineralocorticoid excess is a loss of functional ligand specificity of the mineralocorticoid receptor caused by a deficiency of the kidney isozyme of 11 beta-hydroxysteroid dehydrogenase, an enzyme that normally metabolizes cortisol to cortisone to prevent cortisol from occupying the receptor. This autosomal recessive form of severe hypertension results from mutations in the HSD11K (HSD11B2) gene.  相似文献   

8.
Corticosteroid hormone action is controlled at a pre-receptor level by the activity of two isoforms of 11beta-hydroxysteroid dehydrogenase (11beta-HSD), catalyzing the interconversion of hormonally active cortisol to inactive cortisone. In particular 11beta-HSD2 protects the mineralocorticoid receptor (MR) from glucocorticoid excess, enabling aldosterone to interact with the MR. We have analyzed the subcellular localization of 11beta-HSD2 in relation to the expression of the MR in human colon and placenta. 3H-aldosterone binding studies confirmed expression of the MR in human colon but not term placental trophoblast. Enzyme activity studies and Western blot analyses carried out on subcellular fractions confirmed the presence of 11beta-HSD2 in microsomes. In colon, but not placenta, 11beta-HSD2 was also localized to the microsome-free, nuclear fraction. Protection upon the MR by 11beta-HSD2 in "classical" mineralocorticoid target tissues such as colon can be subserved at both a nuclear and extra-nuclear level. Tissue specific factors are responsible for the subcellular localization of 11beta-HSD2 and we postulate that one such factor may be the MR itself.  相似文献   

9.
Eleven-beta-hydroxysteroid dehydrogenase (11 beta-HSD) is an enzyme which degrades 11-hydroxycorticosteroids to biologically inactive 11-oxocorticosteroids (cortisone and 11-dehydrocorticosterone). In some tissues, the activity of this enzyme prevents binding of cortisol to mineralocorticoid receptors. The present experiments were designed to test the hypothesis that the fetal kidney contains 11 beta-HSD, that the activity of 11 beta-HSD in fetal kidney increases near term, and that the fetal lung does not contain significant 11 beta-HSD activity. In kidney and lung tissue from 23 fetal sheep ranging in age between 86 and 145 days' gestation, we measured 11 beta-HSD activity. We found significant activity in fetal kidney (14-85% conversion from cortisol to cortisone) but no measurable activity in fetal lung (0-9%). The activity of 11 beta-HSD was significantly related to fetal gestational age (r = 0.76, n = 14). We conclude that 11 beta-HSD activity in the fetal kidney develops as a function of fetal gestational age, and that activity cannot be demonstrated in fetal lung. We speculate 11 beta-HSD in the fetus might function to alter the sensitivity of target organs to glucocorticoids, as well as to mineralocorticoids, and that the absence of activity in the lung allows a high sensitivity of pulmonary tissue to cortisol at the end of gestation.  相似文献   

10.
OBJECTIVE: 11 beta-Hydroxysteroid dehydrogenase (11 beta-HSD), by converting the active steroids cortisol and corticosterone to their inactive metabolites, regulates steroid exposure to the mineralocorticoid and glucocorticoid receptors. We explored the hypothesis that a defect in 11 beta-HSD could result in overstimulation of either the mineralocorticoid or glucocorticoid receptors with subsequent hypertension in an established animal model of hypertension, the Bianchi-Milan hypertensive (BMH) rat. DESIGN AND METHODS: Groups of BMH rats with established hypertension (42-46 days old) and prehypertensive rats (22 days old) were compared with age-matched normotensive control rats. Kidney and liver 11 beta-HSD and glucocorticoid receptor messenger RNA (mRNA) levels were assessed by Northern and dot-blot analyses, and 11 beta-HSD activity as percentage conversion of [3H]-corticosterone to [3H]11-dehydrocorticosterone by tissue homogenate. RESULTS: Hepatic 11 beta-HSD activity and gene expression were significantly reduced in the hypertensive BMH rat compared with its normotensive genetic control. 11 beta-HSD activity was also reduced in the prehypertensive BMH rat (aged 25 days) from hypertensive parents, excluding hypertension per se as the cause of the abnormality. Plasma corticosterone was higher in the hypertensive rats. There was no difference in renal 11 beta-HSD activity or gene expression between hypertensive and normotensive BMH rats, or in glucocorticoid receptor gene expression in the liver or kidney. CONCLUSIONS: Normal levels of renal 11 beta-HSD mRNA and activity are found in the BMH rat. However, the hypertensive BMH rat does demonstrate impaired hepatic 11 beta-HSD activity which occurs at a pretranslational level, although it is not clear how this relates to the pathogenesis of hypertension in this model.  相似文献   

11.
At least two isoforms of 11 beta-hydroxysteroid dehydrogenase (11 beta-OHSD) have been identified, and clinical studies have illustrated their physiological and pathological significance. In the kidney, a high affinity 11 beta-OHSD2 inactivates cortisol to cortisone and protects mineralocorticoid receptors from cortisol. In the liver, a low affinity 11 beta-OHSD1 converts cortisone to cortisol, and may ensure that glucocorticoid receptors are adequately exposed to cortisol. In vascular smooth muscle, the conversion of cortisol to cortisone influences vascular tone. Defects in 11 beta-OHSD2 probably account for mineralocorticoid excess in the syndromes of Apparent Mineralocorticoid Excess, licorice administration, and ectopic ACTH syndrome. Defects in 11 beta-OHSD1 may be important in essential hypertension, and polycystic ovarian syndrome. The underlying mechanism for all of these defects, and the putative role of endogenous inhibitors of 11 beta-OHSD, remains unclear. In future, the measurement of the activity of individual isoforms should resolve this uncertainty.  相似文献   

12.
Excessive ingestion of licorice induces a syndrome of hypokalemia and hypertension that reflects increased activation of renal mineralocorticoid receptors by cortisol. A similar syndrome of cortisol-dependent mineralocorticoid excess occurs in congenital deficiency of the enzyme 11 beta-hydroxysteroid dehydrogenase, which normally inactivates cortisol to cortisone. It has been shown that licorice inhibits 11 beta-dehydrogenase, preventing local inactivation of cortisol and allowing cortisol inappropriate access to intrinsically nonspecific renal mineralocorticoid receptors. Further studies with licorice and its derivatives have revealed a widespread role for 11 beta-dehydrogenase in regulating tissue sensitivity to cortisol. Deficient 11 beta-dehydrogenase activity provides a novel pathogenetic mechanism for hypertension, and current research suggests that several common forms of hypertension can be explained by the mechanisms that operate in licorice-induced hypertension.  相似文献   

13.
11Beta-hydroxysteroid dehydrogenase (11beta-HSD) catalyzes the oxidation of cortisol and corticosterone to cortisone and 11-dehydrocorticosterone, respectively. NAD-dependent 11beta-HSD is expressed at high levels in the distal nephron and contributes to mineralocorticoid specificity in that region. The present studies determined whether N-glycosylation is necessary for the activity of NAD-dependent 11beta-HSD (11beta-HSD2). First, cultured human colonic epithelial cells (T84 cells), which express native 11beta-HSD2 activity, were grown in medium with and without tunicamycin, an inhibitor of N-glycosylation. Tunicamycin had no effect on the enzyme activity. Next, the only putative N-glycosylation site (Asn394-Leu395-Ser396) of the cloned human kidney enzyme was eliminated by site-directed mutagenesis. Chinese hamster ovary (CHO) cells transfected with either the wild-type or the mutant cDNA construct showed no difference in the expressed enzyme activity, and Western blot analysis showed that the 11beta-HSD2 protein was the same size in cells expressing either the wild-type or the N394D mutant. Likewise, the molecular mass of the 11beta-HSD2 protein in T84 cells was not altered by treatment with peptide-N-glycosidase F or tunicamycin. We conclude that human 11beta-HSD2 is not a N-glycoprotein and N-glycosylation is not essential for the expression of enzyme activity.  相似文献   

14.
OBJECTIVE: It has been shown recently that 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) is expressed as at least 2 isozymes. In the liver, 11 beta-HSD1 converts cortisone to cortisol; in the kidney, 11 beta-HSD2 converts cortisol to cortisone. Conventional assessment of 11 beta-HSD activity in vivo has relied on gas chromatographic measurement of the ratios of conjugated cortisol and cortisone metabolites. However, these do not permit distinction between the tissue-specific activities of the enzymes and do not reflect all forms of 11 beta-HSD deficiency. In this report, we have assessed the usefulness of measuring unconjugated cortisol metabolites and free cortisol and cortisone in urine as indices of renal 11 beta-HSD activity in man. DESIGN: Six healthy male subjects established in sodium balance were given either glycyrrhetinic acid (170 mg t.d.s., to inhibit 11 beta-HSD2), carbenoxolone (100 mg t.d.s., to inhibit both 11 beta-HSD1 and 11 beta- HSD2) or both inhibitors in combination. MEASUREMENTS: Urinary electrolytes were measured and the concentrations of total and unconjugated urinary cortisol and its metabolites were determined by gas chromatography mass spectrometry. RESULTS: Glycyrrhetinic acid and carbenoxolone inhibited renal 11 beta-HSD2 to a similar degree, as judged by similar sodium retention. As previously reported, conventional measurement of ratios of total cortisol to cortisone metabolites were influenced to a greater extent by glycyrrhetinic acid (100-200% increase in ratio from baseline) than by carbenoxolone (< 30% increase). However, the effect of carbenoxolone was readily detected by measurement of urinary unconjugated cortisol/cortisone (130-480% increase of ratio from baseline) and also by measurement of ratios of unconjugated cortisol metabolites (60-130% increase). CONCLUSIONS: Measurement of free cortisol and cortisone in urine provides the most sensitive index of renal 11 beta-HSD activity. Measurement of total and conjugated urinary steroids is insensitive in circumstances where 11 beta-HSD activity in liver or elsewhere may be abnormal.  相似文献   

15.
11 beta-Hydroxysteroid dehydrogenase (11 beta-HSD) catalyses the interconversion of biologically active cortisol to inactive cortisone in man, and corticosterone to 11-dehydrocorticosterone in rodents. As such, this enzyme has been shown to confer aldosterone-selectivity on the mineralocorticoid receptor and to modulate cortisol/corticosterone access to the glucocorticoid receptor (GR). Two kinetically distinct isoforms of this enzyme have been characterized in both rodents and man; a low-affinity NADP(H)-dependent enzyme (11 beta-HSD1) which predominantly acts as an oxoreductase and, more recently, a high-affinity NAD-dependent uni-directional dehydrogenase (11 beta-HSD2). In this study we have analysed the expression of both 11 beta-HSD1 and 11 beta-HSD2 isoforms in rat adrenal cortex and medulla and have investigated their possible roles with respect to glucocorticoid-regulated enzymes mediating catecholamine biosynthesis in adrenal medullary chromaffin cells. Using a rat 11 beta-HSD1 probe and a recently cloned in-house mouse 11 beta-HSD2 cDNA probe, Northern blot analyses revealed expression of mRNA species encoding both 11 beta-HSD1 (1.4 kb) and 11 beta-HSD2 (1.9 kb) in the whole adrenal. Consistent with this, 11 beta-dehydrogenase activity (pmol 11-dehydrocorticosterone formed/mg protein per h, mean +/- S.E.M.) in adrenal homogenates, when incubated with 50 nM corticosterone in the presence of 200 microM NAD, was 97.0 +/- 9.0 and with 500 nM corticosterone in the presence of 200 microM NADP, was 98.0 +/- 1.4. 11-Oxoreductase activity (pmol corticosterone formed/mg protein per h) with 500 nM 11-dehydrocorticosterone in the presence of 200 microM NADPH, was 187.7 +/- 31.2. In situ hybridization studies of rat adrenal cortex and medulla using 35 S-labelled antisense 11 beta-HSD1 cRNA probe revealed specific localization of 11 beta-HSD1 mRNA expression predominantly to cells at the corticomedullary junction, most likely within the inner cortex. In contrast, 11 beta-HSD2 mRNA was more abundant in cortex versus medulla, and was more uniformly distributed over the adrenal gland. Negligible staining was detected using control sense probes. Ingestion of the 11 beta-HSD inhibitor, glycyrrhizic acid (> 100 mg/kg body weight per day for 4 days) resulted in significant inhibition of adrenal NADP-dependent (98.0 +/- 1.4 vs 42.5 +/- 0.4) and NAD-dependent (97.0 +/- 9.0 vs 73.2 +/- 6.7) 11 beta-dehydrogenase activity and 11-oxoreductase activity (187.7 +/- 31.2 vs 67.7 +/- 15.3). However, while levels of 11 beta-HSD1 mRNA were similarly reduced (0.85 +/- 0.07 vs 0.50 +/- 0.05 arbitrary units), those for 11 beta-HSD2 remained unchanged (0.44 +/- 0.03 vs 0.38 +/- 0.01). Levels of mRNA encoding the glucocorticoid-dependent enzyme phenylethanolamine N-methyltransferase which catalyses the conversion of noradrenaline to adrenaline, were also significantly reduced in those rats given glycyrrhizic acid (1.12 +/- 0.04 vs 0.78 +/- 0.04), while those for the glucocorticoid-independent enzyme tyrosine hydroxylase (1.9 kb), which catalyses the conversion of tyrosine to DOPA, were unchanged (0.64 +/- 0.04 vs 0.61 +/- 0.04). In conclusion, the rat adrenal gland expresses both 11 beta-HSD1 and 11 beta-HSD2 isoforms. 11 beta-HSD1 gene expression is localized to the adrenal cortico-medullary junction, where it is ideally placed to regulate the supply of cortex-derived corticosterone to the medullary chromaffin cells. This, together with our in vivo studies, suggests that 11 beta-HSD1 may play an important role with respect to adrenocorticosteroid regulation of adrenaline biosynthesis. The role of 11 beta-HSD2 in the adrenal remains to be elucidated.  相似文献   

16.
17.
The present study was designed to examine the effects of metyrapone in vitro on the activities of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) types 1 and 2, the two intracellular enzymes responsible for the metabolism of glucocorticoids. Enzymatic activities of 11beta-HSD1 and 2 were determined by a radiometric conversion assay using cortisol and cortisone as physiological substrates. The enzyme activity assays were carried out in the absence and presence of metyrapone using sheep liver and kidney microsomes as the source of 11beta-HSD1 and 2, respectively. It was found that metyrapone inhibited the reductase activity of 11beta-HSD1 in a dose-dependent manner with an apparent Ki of 30 microM. Moreover, this inhibition was competitive because the Km for cortisone was increased in the presence of metyrapone. In contrast, metyrapone showed biphasic effects on the dehydrogenase activity of 11beta-HSD1, in that it increased the activity at concentrations lower than 100 microM but decreased it at higher concentrations. However, under similar conditions, metyrapone had little effect on the unidirectional dehydrogenase activity of 11beta-HSD2. In conclusion, the present results provide the first direct evidence that metyrapone is a competitive inhibitor of 11beta-HSD1 reductase, and that it also exerts biphasic effects on 11beta-HSD1 dehydrogenase activity. These findings indicate that metyrapone influences peripheral glucocorticoid metabolism through its regulation of 11beta-HSD1 activity, in addition to its classic inhibitory effects on adrenal steroid biosynthesis. It is therefore imperative that this novel extra-adrenal effect of metyrapone be considered when this drug is used in the diagnosis and treatment of adrenocorticoid-related diseases.  相似文献   

18.
In previous studies in human subjects metyrapone has been found to exert significant extra-adrenal effects, consistent with an effect on the 11-reductase activity of 11beta-hydroxysteroid dehydrogenase (11beta-HSD). In the present study the effects of metyrapone on cortisone metabolism by rat liver microsomes were investigated. Aliquots of microsomal preparations were incubated with NADPH cofactor and different concentrations of cortisone for a range of time intervals up to 30 min. The products of the reaction were extracted with ethyl acetate and separated using thin-layer chromatograph. Cortisol was estimated by radioimmunoassay. There was a linear increase in cortisol formation over the first 150 sec of the reaction. Over this time period metyrapone had no effect on the rate of the reaction. When the reaction was allowed to proceed for 30 min, however, metyrapone caused a 50% decrease in the amount of cortisol formed. These data suggest that metyrapone may alter cortisone-cortisol conversion by directly interacting with 11beta-HSD but in this system metyrapone does not appear to have the characteristics of a conventional enzyme inhibitor.  相似文献   

19.
Glucocorticoids (GCs) act via intracellular mineralocorticoid (MR) and glucocorticoid receptors (GR). However, it has recently been recognized that GC access to receptors is determined by the presence of tissue-specific 11beta-hydroxysteroid dehydrogenases (11beta-HSDs) that catalyze the interconversion of active corticosterone and inert 11-dehydrocorticosterone. 11beta-HSD type 1 (11beta-HSD1) is a bidirectional enzyme in vitro that acts predominantly as a reductase (regenerating corticosterone) in intact neurons. In contrast, 11beta-HSD type 2 (11beta-HSD2) is a higher affinity exclusive dehydrogenase that excludes GCs from MR in the kidney, producing aldosterone-selectivity in vivo. We have examined the ontogeny of 11beta-HSD mRNAs and enzyme activity during prenatal brain development and correlated this with GR and MR mRNA development. These data reveal that (1) 11beta-HSD2 mRNA is highly expressed in all CNS regions during midgestation, but expression is dramatically reduced during the third trimester except in the thalamus and cerebellum; (2) 11beta-HSD2-like activity parallels closely the pattern of mRNA expression; (3) 11beta-HSD1 mRNA is absent from the CNS until the the third trimester, and activity is low or undectectable; and (4) GR mRNA is highly expressed throughout the brain from midgestation, but MR gene expression is absent until the last few days of gestation. High 11beta-HSD2 at midgestation may protect the developing brain from activation of GR by GCs. Late in gestation, repression of 11beta-HSD2 gene expression may allow increasing GC activation of GR and MR, permitting key GC-dependent neuronal and glial maturational events.  相似文献   

20.
A characteristic feature of the ectopic ACTH syndrome is a state of mineralocorticoid excess, although the etiology remains obscure. Some forms of endocrine hypertension, such as licorice ingestion, have been explained by cortisol acting as a mineralocorticoid in the setting of inhibition or deficiency of 11 beta-hydroxysteroid dehydrogenase (11 beta HSD). This enzyme is responsible for the conversion of cortisol (F) to hormonally inactive cortisone, and its activity in vivo can be inferred from the ratio of the urinary excretion of tetrahydrocortisol (THF) and its isomer (5 alpha THF) to tetrahydrocortisone. Twenty-two patients with Cushing's syndrome (11 pituitary dependent, 9 ectopic, and 2 adrenal adenomas) and 13 controls were studied. Compared to controls. Cushing's patients had a significant increase (P < 0.001) in the excretion of all principal metabolites of F, secondary to a 5- to 6-fold increase in the cortisol secretion rate [median, 34.0 (range, 13.3-327) mg/day in Cushing's vs. 6.1 (range, 2.5-10.3) mg/day in controls]. The THF plus 5 alpha THF/tetrahydrocortisone ratio was significantly increased in Cushing's syndrome regardless of etiology [mean, 1.81 (range, 1.09-9.99) in Cushing's vs. 0.81 (range, 0.51-1.47) in controls; P < 0.001), indicative of defective 11 beta HSD activity. Furthermore, compared to patients with pituitary-dependent Cushing's, this ratio was significantly higher in patients with the ectopic ACTH syndrome (4.12 vs. 1.49; P < 0.01) and was inversely correlated with serum potassium levels (r = -0.57; P = 0.01; n = 22). One explanation for the mineralocorticoid excess state of the ectopic ACTH syndrome appears to be that cortisol gains inappropriate access to the mineralocorticoid receptor through failure of its normal metabolism by 11 beta HSD. The reason for the defective 11 beta HSD activity is unclear, but it may be secondary to substrate saturation, inhibition by other adrenal steroids, or product inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号