首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fiber orientation induced by injection mold filling of short-fiber-reinforced thermoplastics (FRTP) causes anisotropy in material properties and warps molded parts. Predicting fiber orientation is important for part and mold design to produce sound molded parts. A numerical scheme is presented to predict fiber orientation in three-dimensional thin-walled molded parts of FRTP. Folgar and Tucker's orientation equation is used to represent planar orientation behavior of rigid cylindrical fibers in concentrated suspensions. The equation is solved about a distribution function of fiber orientation by using a finite difference method with input of velocity data from a mold filling analysis. The mold filling is assumed to be nonisothermal Hele-Shaw flow of a non-Newtonian fluid and analyzed by using a finite element method. To define a degree of fiber orientation, an orientation parameter is calculated from the distribution function against a typical orientation angle. Computed orientation parameters were compared with measured thermal expansion coefficients for molded square plates of glass-fiber-reinforced polypropylene. A good correlation was found.  相似文献   

2.
Injection molding analysis programs were developed for CAE (Computer Aided Engineering) in injection molding of thermoplastics. The programs consist of mold cooling, polymer filling-packing-cooling, fiber orientation, material properties and stress analyses. These programs are integrated to predict warpage of molded parts by using a common geometric model of three dimensional thinwalled molded parts. The warpage is predicted from temperature difference between upper and lower surfaces, temperature distribution, flow induced shear stress, shrinkage, and anisotropic mechanical properties caused by fiber orientation in the integrated simulation. The integrated simulation was applied to predicting warpage of a 4-ribbed square plate of glass fiber reinforced polypropylene for examination of its validity. Predicted saddle-like warpage was in good agreement with experimental one.  相似文献   

3.
基于Mori?Tanaka均匀化方法,对短纤维复合材料开孔板力学性能进行研究。首先,使用Mori?Tanaka方法预测单向和二维2种分布形式的短纤维复合材料应力?应变曲线曲线。其次,通过试验方法分析不同区域纤维取向对开孔板力学性能的影响。最后,使用多尺度方法研究不同注塑位置和不同开孔方式对开孔板力学性能的影响,该部分在宏观有限元分析中耦合了注塑模拟的纤维方向分布以及Mori?Tanaka均匀化方法得到的复合材料参数。结果表明,短边注塑开孔板综合力学性能更好;孔周围纤维分布是影响应力集中的主要因素;整体的纤维取向分布影响开孔板的刚度;单向纤维材料的角度对材料性能的影响不是单调的。  相似文献   

4.
The fibers in injection molded FRP provide the material's strength and stiffness; however, they also supply many of the problems. Preferential orientation of fibers during molding can reduce strength and stiffness below expected values in critical directions, or induce warpage in thin walled sections. Makers of short fiber reinforced injection molded products typically use computer aided engineering packages to optimize product performance and manufacturing variables. However, the reliability of the fiber orientation simulation can be limited, and the method is not easily understood, making an assessment of accuracy for a given situation difficult. In addition, the structural module of flow analysis packages is often a basic package with many features missing. This paper presents a structural analysis system for injection molded parts made of short fiber reinforced plastics. A full-featured commercial structural analysis code is interfaced with a flow analysis program using a practical material model that takes into account the effects of local fiber orientation. The system is completely open to the user, and can be modified as required.  相似文献   

5.
以长玻纤增强聚丙烯(PP)注塑制品为研究对象,通过引入微、纳尺度第二增强相调控长纤维在注塑制品中的取向度,从而获得取向度较低的皮层结构,以诱导长纤维在注塑件空间内形成连续、均匀的三维网络结构,从而明显提高制品的力学性能。对不同尺度混杂填充长纤维注塑微观结构的比较分析结果表明:加入纳米尺度第二相碳纳米管(CNTs),在基体黏度提高和CNTs、长纤维交互作用的双重影响下,增加了纤维沿着基体流动方向的阻力,改变了纤维的取向,降低了注塑制品皮层的纤维取向度。但是,由于树脂黏度提高,对纤维的剪切作用增强,纤维折损率加大,其强化效应有所减弱。比较而言,长碳纤维与长玻纤混杂填充,由于纤维间的相互搭接形成的三维骨架结构,既降低了制品微观结构取向度,又提高了制品的力学性能。以自制的长纤维增强PP材料注塑成型了汽车座椅骨架,验证了该微观结构调控的有效性。  相似文献   

6.
The mechanical properties of injection molded parts in glass reinforced materials are sensitive to processing. A successful design requires a good estimate of the product performance before production. Its performance is strongly affected by the fiber orientation field set up during processing. The fiber orientation pattern is complex and varies three‐dimensionally in the moldings. Some commercial simulation programs already allow the prediction of the fiber orientation induced during the flow by the associated stress field. The results from the simulations are dependent on a parameter accounting for the interactions between fibers during the flow, known as the fiber interaction coefficient. In this paper the effectiveness of the interaction parameter on controlling the predicted patterns of the fiber orientation is studied. This is done by comparing and analyzing the experimental data and the corresponding predictions.  相似文献   

7.
采用模拟流动分析软件MPI,借助有限元分析方法对玻璃纤维增强尼龙6(PA6/GF)复合材料的注射成型过程进行了模拟流动分析,研究了PA6/GF复合材料制品的纤维取向对最终力学性能的影响,获得了可满足实际设计要求的模具浇注和冷却系统布置、注塑机锁模力曲线和推荐的螺杆速度曲线等参数,对于缩短PA6/GF复合材料注射成型设计周期、提高制品质量具有重要的指导意义。  相似文献   

8.
In the automotive industry, glass-filled thermoplastics are used in air intake manifolds, radiator tanks, and many other parts. Plastic parts have many advantages over metal parts including mass, design flexibility and parts consolidation. However, widespread application of glass-filled thermoplastic materials has been limited in many cases by the inability to accurately predict performance and durability. Fiber-filled injection-molded parts contain complex fiber orientation patterns. This fiber orientation state affects material properties including elastic modulus and strength and part properties including shrinkage and warpage. Tremendous amounts of time and money can be saved if one can predict the moldability and mechanical properties of a part at the design stage. In this work, we present a method where commercially available injection molding and structural analysis software may be coupled together with appropriate material property data to improve prediction of structural performance for parts molded from short glass fiber-filled plastics. In addition, we compare the experimental and predicted performance based on simple equations and complex finite element calculations. Two major conclusions may be drawn from this work. In general, the assumption of geometric nonlinearity must be made. Also, an orthotropic material model is generally more robust and accurate than an isotropic analysis. Polym. Compos. 25:343–354, 2004. © 2004 Society of Plastics Engineers.  相似文献   

9.
A numerical simulation is presented that combines the flow simulation during injection molding with an efficient algorithm for predicting the orientation of short fibers in thin composite parts. Fiber-orientation state is represented in terms of a second-order orientation tensor. Fiber-fiber interactions are modeled by means of an isotropic rotary diffusion. The simulation predicts flow-aligned fiber orientation (shell region)near the surface with transversely aligned (core region) fibers in the vicinity of the mid-plane. The effects of part thickness and injection speed on fiber orientation are analyzed. Experimental measurements of fiber orientation in plaque-shaped parts for three different combinations of cavity thickness and injection speed are reported. It is found that gapwise-converging flow due to the growing layer of solidified polymer near the walls tends to flow-align the fibers near the entrance, whereas near the melt front, gapwise-diverging flow due to the diminishing solid layer tends to lign the fibers transverse to the flow. The effect of this gapwise-converging-diverging flow is found to be especially significant for thin parts molded at slower injection speeds, which have a proportionately thicker layer of solidified polymer during the filling process. If the fiber orientation is known, predictions of the anisotropic tensile moduli and thermal-expansion coefficients of the composite are obtained by using the equations for unidirectional composites and taking an orientation average. These predictions are found to agree reasonably well with corresponding experimental measurements.  相似文献   

10.
The injection molding process is widely accepted for the processing of engineering thermoplastics due to the ease of manufacturing complex designs. Weld-line is a defect occurring in injection molded parts when two flow fronts join each other. At weld-line locations, parts exhibit lower mechanical strength mainly due to inadequate intermolecular diffusion and fiber orientation anisotropy. The present work is aimed at investigating and comparing weld-line strength for unfilled and glass-filled polyamide-6 materials. To achieve this, polyamide-6 unfilled, 30% glass-filled, and 50% glass-filled materials are used to manufacture plaques. The special-purpose mold is designed to obtain plaques with and without weld-lines with help of Moldflow simulations. The specimens for tensile tests are then cut from molded plaques and experimental testing is conducted to evaluate tensile properties. Fractured surfaces of specimens are examined using a scanning electron microscope. The results demonstrated a significant drop in tensile strength and modulus for glass-filled material weld-line specimens when compared to specimens of no weld-line. However, for unfilled specimens, tensile strength and modulus are almost the same for samples with and without weld-line. A reduction in tensile strength of 13%, 49%, and 57% is observed for unfilled, 30% glass-filled, and 50% glass-filled polyamide-6 material respectively.  相似文献   

11.
Injection molding of fiber‐reinforced polymeric composites is increasing with demands of geometrically complex products possessing superior mechanical properties of high specific strength, high specific stiffness, and high impact resistance. Complex state of fiber orientation exists in injection molding of short fiber reinforced polymers. The orientation of fibers vary significantly across the thickness of injection‐molded part and can become a key feature of the finished product. Improving the mechanical properties of molded parts by managing the orientation of fibers during the process of injection molding is the basic motivation of this study. As a first step in this direction, the present results reveal the importance of packing pressure in orienting the fibers. In this study, the effects of pressure distribution and viscosity of a compressible polymeric composite melt on the state of fiber orientation after complete filling of a cavity is considered experimentally and compared with the simulation results of Moldflow analysis. POLYM. COMPOS. 28:214–223, 2007. © 2007 Society of Plastics Engineers  相似文献   

12.
Fiber‐reinforced thermoplastic for low weight application become increasingly important for many industrial branches. During the injection molding of short fiber‐reinforced thermoplastic parts the fibers become orientated. This orientation is determined on the one hand by the geometry of the part, and on the other hand by the injection molding parameters, and influence the mechanical behavior of the part. The determination of the fiber properties that is, the orientation distribution of the fibers, is therefore of considerable interest. Since a more accurate fiber orientation prediction of the injection molding simulation will lead to a more precise structural simulation the objective of the present work is to achieve a preferably accurate orientation distribution. To describe the orientation distribution of the fibers, the fiber orientation tensor defined by Advani and Tucker (Advani and Tucker, Journal of Rheology, 31, 751 (1987)) was used. To determine the entries of this tensor micro computed tomography scans (μCT‐scans) of an injection‐molded plate, as well as an injection‐molded specimen with different cross section and shape were performed. Injection molding simulation using Autodesk Moldflow Insight were carried out. The residual strain closure (RSC) model was the underlying model to depict the fiber orientation distribution, or rather the orientation tensors. The two model parameters, the fiber interaction coefficient Ci and the scalar factor κ , were adapted by an optimization procedure, in such a way that the orientation distributions of the simulations fit the results of the μCT‐analysis at its best. POLYM. ENG. SCI., 59:E152–E160, 2019. © 2018 Society of Plastics Engineers  相似文献   

13.
Tensile and flexural tests on specimens cut from rectangular injection‐molded plaques show that long‐fiber filled thermoplastic composites are complex, non‐homogeneous, anistropic material systems. Like all fiber‐filled materials, they exhibit through‐thickness nonhomogeneity as indicated by differences between tensile and flexural properties. The in‐plane orientation of fibers in through‐thickness layers causes the material to have in‐plane anisotropic properties. However, these long‐fiber filled materials exhibit an unexpectedly large level of in‐plane nonhomogeneity. Also, the effective mechanical properties of these materials are strongly thickness dependent. The thinnest plaques exhibit the largest differences between the flow and cross‐flow tensile properties. These differences decrease with increasing thickness. A methodology for part design with this class of materials is discussed.  相似文献   

14.
In this paper we describe a study of the fiber orientation structures present within a model ribbed injection molded plate. The details of the fiber orientation at each chosen location on the injection molded parts were measured using an in-house developed image analysis system, which enabled large areas to be scanned (up to 200 mm2) up to a limit of 1 million fiber images. Two materials were used for these experiments, short glass fiber filled PBT and short glass fiber filled nylon 66. First, a comparison was made between the fiber orientation at an identical position, 28 mm from the injection gate on a transverse rib, on two plates made from glass fiber filled PBT. It was found that the fiber orientation in these two separately manufactured components was virtually identical when comparing the whole scanned area, but the differences became more significant when comparing areas on the length scale of an individual fiber (∼ 200 μm). Second, the fiber orientation at the same position was compared for two plates made using the glass/PBT and glass/nylon 66 materials. The differences for the complete scanned areas were small, confirming that mold geometry plays a crucial role in determining fiber orientation structures, and that matrix properties are secondary. Third, the fiber orientation structures at various positions across one of the glass/PBT plates were examined in greater detail, in particular across a number of the transverse ribs: the chosen ribs were of various widths and heights. Differences in structure were found depending on the local rib geometry. Finally, the effect of the measured fiber orientation structures in determining the mechanical properties of the ribbed plate was investigated using simple modeling schemes. While the stiffness of the rib/web assembly was found to depend on the average fiber orientation of the two parts, the different thermal expansions of the web and the rib, caused by the different fiber orientation in the two regions, led to significant warpage of the rib/web assembly. Polym. Compos. 25:237–254, 2004. © 2004 Society of Plastics Engineers.  相似文献   

15.
Flow‐induced orientation of the conductive fillers in injection molding creates parts with anisotropic electrical conductivity where through‐plane conductivity is several orders of magnitude lower than in‐plane conductivity. This article provides insight into a novel processing method using a chemical blowing agent to manipulate carbon fiber (CF) orientation within a polymer matrix during injection molding. The study used a fractional factorial experimental design to identify the important processing factors for improving the through‐plane electrical conductivity of plates molded from a carbon‐filled cyclic olefin copolymer (COC) containing 10 vol% CF and 2 vol% carbon black. The molded COC plates were analyzed for fiber orientation, morphology, and electrical conductivity. With increasing porosity in the molded foam part, it was found that greater out‐of‐plane fiber orientation and higher electrical conductivity could be achieved. Maximum conductivity and fiber reorientation in the through‐plane direction occurred at lower injection flow rate and higher melt temperature. These process conditions correspond with foam flow during filling of the mold cavity, indicating the importance of shear stress on the effectiveness of a fiber being rotated out‐of‐plane during injection molding. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

16.
In short‐fiber reinforced composites, it is widely accepted that the fiber orientation plays an important role on their overall physical and thermomechanical properties. To predict the properties of such composite materials, a full 3D fiber orientation characterization is required. A variety of destructive and nondestructive techniques have been developed, but all the methods have the same common point that they are very tedious and time consuming. Knowing that the fiber orientation induced by the flow remains mainly in the flow plane, an easier method has been performed for injection molded fiber‐filled polymers. It is based on the simple 2D SEM image analysis of a specific 45°‐oblique section plane. Then, the indetermination of fiber orientation from an ellipse mark analysis does not exist anymore. This novelty also turns out to be much more accurate. To achieve measurements over large composite samples, the method has been fully automated. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

17.
The effect of fill time on the mechanical properties, surface appearance, and part dimensions of several polymers was determined. Two crystalline materials, polypropylene and nylon 6,6, and an amorphous material, acrylonitrile-butadiene-styrene (ABS), were used. In addition, the effect of the presence of glass fibers was examined using glass fiber reinforced nylon 6,6. The fill time was varied from 0.8 to 20 sec which included both the viscous flow controlled region (short fill times) where laboratory samples are ordinarily molded and the heat transfer controlled region (long fill times) where production parts arc commonly molded. No large variations in tensile properties were observed for polypropylene or nylon, but a 10 percent increase in peak tensile stress and strain for ABS did indicate that molecular orientation increased with increasing fill time. However, significant differences did occur in the properties of glass reinforced nylon. Peak tensile stress increased 15 percent and flexural strength decreased 10 percent as the fill time was increased. Although no change in the flexural modulus was observed, the scatter in the modulus decreased with increasing fill time. These property variations can be attributed to differences in the glass fiber orientation of the skin and core regions of the part. The measurement of molded tensile bar dimensions indicated there was little effect of fill time on the shrinkage of the various polymers except for shrinkage in the length direction for polypropylene. The shrinkage increased from 13 to 15.4 mm/m over the fill time range, a great enough difference to affect the fit of large parts. The most dramatic change with fill time was the surface appearance of the glass reinforced nylon. The surface of samples molded at short fill times had a dark uniform color and smooth appearance while samples molded at long fill times had a lighter color and a porous surface. This surface porosity is due to crystallization prior to complete pressurization of the mold. Therefore, in addition to affecting surface appearance, other surface related properties such as aging and the ability to plate plastic parts could also be affected.  相似文献   

18.
The dynamic tensile properties of glass-fiber-reinforced polypropylene have been measured for pure bending. The specimens were cut from the injection molded outer drum of a washing machine. Fiber orientation within the specimens was investigated using a scanning electron microscope, and was observed to be predominantly in the direction of flow, throughout the thickness of the material. It was found that the stiffness was greater in the direction of fiber orientation, while the damping was greater in the transverse direction. The results were in general agreement with values obtained from torsion pendulum experiments.  相似文献   

19.
The effects of processing and part geometry on the local mechanical properties of injection‐molded, 30 wt% short‐fiber‐reinforced filled poly(butylene terephthalate) (PBT) are characterized by mechanical tests on specimens cut from rectangular plaques of different thicknesses injection molded at several different processing conditions. Stiffness data from tensile tests at 12.7‐mm intervals on 12.7‐mm‐wide strips cut from injection‐molded plaques—both along the flow and cross‐flow directions—and flexural tests on these strips show consistency of plaque‐to‐plaque local properties. Also, in addition to the well‐known anisotropic properties caused by flow‐induced fiber orientation, injection‐molded short fiber composites exhibit in‐plane and through‐thickness nonhomogeneity—as indicated by in‐plane property variations, by differences between tensile and flexural properties, and by the flexural strength being significantly higher than the tensile strength. The sensitivity of these mechanical properties to process conditions and plaque geometry have also been determined: the flow‐direction tensile modulus increases with fill time, the differences between flow and cross‐flow properties decrease with increasing thickness, and both the flow and cross‐flow flexural moduli decrease with increasing plaque thickness. While the flexural modulus is comparable to the tensile modulus, the flexural strength is significantly higher than the tensile strength. POLYM. COMPOS., 26:428–447, 2005. © 2005 Society of Plastics Engineers  相似文献   

20.
An application of a finite element simulation of mold filling and predication of fiber orientation in fiber filled compression molded parts is presented. Three-dimensional thin-walled geometries are considered. Following a simulation of the filling process, a set of transort equations are solved to predict the locally planar orientation of short fiber composites. The final orientation states throughout the part provide the necessary information to obtain a locally orthotropic mechanical model of the composite. A sheet molding compound part with a multiple charge pattern is used to illustrate the generality of the algorithms developed for compression flow, fiber orientation, and property predications. Derivations of the orthotropic mechanical properties obtained from the fiber orientation results are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号