共查询到16条相似文献,搜索用时 78 毫秒
1.
针对现在广泛使用的三维形变模型表达能力不够,导致重建出的三维人脸模型泛化性能不佳的问题,提出了一种在姿态、表情和光照未知的条件下的基于单张人脸图片的三维人脸重建和密集人脸对齐的新方法。首先,通过卷积神经网络对现有的三维形变模型进行改进,以提高三维人脸模型的表达能力;然后,基于人脸光滑性和图像相似性,在特征点和像素层面提出新的损失函数,并使用弱监督学习训练卷积神经网络模型;最后,通过训练出的网络模型进行三维人脸重建和密集人脸对齐。实验结果表明,对于三维人脸重建任务,所提模型在AFLW2000-3D上实现了2.25的归一化平均误差;对于密集人脸对齐任务,所提模型在AFLW2000-3D和AFLW-LFPA上分别实现了3.80和3.34的归一化平均误差。与原始使用三维形变模型的方法相比,所提模型在三维人脸重建和密集人脸对齐上的归一化平均误差分别降低了7.4%和7.8%。针对不同光照环境以及角度的人脸图片,该网络模型的重建准确,鲁棒性好,且具有较高的三维人脸重建和密集人脸对齐质量。 相似文献
2.
针对现在广泛使用的三维形变模型表达能力不够,导致重建出的三维人脸模型泛化性能不佳的问题,提出了一种在姿态、表情和光照未知的条件下的基于单张人脸图片的三维人脸重建和密集人脸对齐的新方法。首先,通过卷积神经网络对现有的三维形变模型进行改进,以提高三维人脸模型的表达能力;然后,基于人脸光滑性和图像相似性,在特征点和像素层面提出新的损失函数,并使用弱监督学习训练卷积神经网络模型;最后,通过训练出的网络模型进行三维人脸重建和密集人脸对齐。实验结果表明,对于三维人脸重建任务,所提模型在AFLW2000-3D上实现了2.25的归一化平均误差;对于密集人脸对齐任务,所提模型在AFLW2000-3D和AFLW-LFPA上分别实现了3.80和3.34的归一化平均误差。与原始使用三维形变模型的方法相比,所提模型在三维人脸重建和密集人脸对齐上的归一化平均误差分别降低了7.4%和7.8%。针对不同光照环境以及角度的人脸图片,该网络模型的重建准确,鲁棒性好,且具有较高的三维人脸重建和密集人脸对齐质量。 相似文献
3.
针对三维人脸重建和密集对齐算法精度不足的问题,引入密集连接的多尺度特征融合模块和残差注意力机制设计了一种性能强大的网络.在编码器结构前,引入密集连接的多尺度特征融合模块获得多尺度融合特征,使编码器获得更丰富的信息;在解码器模块中引入残差注意力机制,强化网络对重要特征的关注同时抑制不必要的噪声.实验结果表明,相较其他算法,该算法取得了较显著的改进;相对PRNet,该算法以更少的参数量在各项指标上取得7.7%~12.1%的性能提升. 相似文献
4.
三维人脸重建旨在从二维人脸图片中恢复出三维人脸模型。自监督三维人脸重建能够缓解三维人脸数据缺乏的问题,因此成为了近年来的研究热点。现有的自监督方法通常聚焦于使用全局监督信号,对人脸的局部细节关注不足。为了更好地恢复出细节生动的精细化三维人脸,提出了一种基于人脸部件掩膜的精细化三维人脸重建方法,该方法在不需要任何三维人脸标注的情况下,可以重建出精细化三维人脸。其主要思想是在二维图片一致性损失、图片深层感知损失等基本损失函数上,通过人脸部件掩膜,给予人脸区域精细化约束,并对人脸部件掩膜进行自监督约束,从而提高重建的三维人脸局部的准确性。在AFLW2000-3D和MICC Florence数据集上进行了定性以及定量实验,验证了所提方法的有效性和优越性。 相似文献
5.
针对图像驱动的三维人脸建模这个计算机图形学中的研究热点问题,提出一种采用三维人脸形变模型的三维人脸自动生成与编辑算法.首先建立三维人脸形变模型,由三维人脸数据库统计学习得到线性混合人脸模型,用一个低维的参数向量来描述一个人脸;然后通过人脸检测、人脸对齐、边缘提取等方法从人脸图像中提取人脸的特征,根据这些特征实现三维人脸形变模型与图像的匹配,重建出与图像对应的三维人脸模型;最后,通过改变参数向量的值实现人脸的编辑.对5个输入人脸照片进行了三维人脸模型重建和编辑并且将重建的人脸模型和真实人脸模型进行了对比,实验结果表明,该算法可实现真实化的人脸重建效果. 相似文献
6.
7.
8.
提出了一种多阶段优化的方法来解决基于多视角图片在未知姿态、表情以及光照条件下的高精度三维人脸重建问题.首先,通过重新渲染合成的方法将参数化模型拟合到输入的多视角图片,然后在纹理域上求解一个光流问题来获取不同视角之间的对应关系.通过对应关系可以恢复出人脸的点云,并利用基于明暗恢复几何的方法来恢复人脸细节.在真实数据以及合成数据下的实验结果表明,文中方法能够恢复出带有几何细节的高精度的三维人脸模型,并且提高了现有方法的重建精度. 相似文献
9.
由于受到光照和成像设备等条件因素的影响,采集到的单帧人脸图像分辨率低,无法进行准确人脸识别,所以需要图像超分辨率重建.而利用SRGAN模型在进行人脸超分辨率重建过程中,易出现梯度消失或爆炸的问题,严重影响了重建图像的精度和质量.针对上述问题,提出了基于生成对抗网络的改进人脸超分辨率重建算法,在SRGAN结合WGA-N的... 相似文献
10.
针对网络视频质量低导致人脸检测准确率低的问题,提出一种基于人脸超分辨率重建的SR Face Detection模型.使用去掉自监督分支且以Resnet50为基础网络的RetinaFace进行帧图片人脸的粗提取;在人脸检测器后增加一个人脸超分辨率重建网络,剔除粗提取人脸中的非人脸.该超分网络的生成网络使用残差密集块进行特征提取,加入注意力损失和热图,更好地还原面部细节;根据实际需求设计一个多判别功能的判别网络.实验结果表明,SR Face Detection模型在WID-ER FACE数据集上取得了令人信服的结果,提高了人脸检测准确率,且人脸检测场景越复杂,效果提升越明显. 相似文献
11.
人脸艺术造型与其原型人脸的相似性是造型成功与否的关键指标之一。传统相似性研究建立在同构数据特征基础之上,对呈异构形态的二维图像人脸和三维网格人脸之间的相似性计算问题的研究还很少见。采用双层拉普拉斯流形对齐方法,通过对相同样本数的二维人脸数据集和三维人脸数据集进行协同降维,发现两者的共享流形嵌入,建立异构的二维人脸图像与三维网格人脸之间的相似模型,实现对异构人脸之间相似性的定量计算。通过实验,证明了该方法的合理性与有效性。 相似文献
12.
前列腺磁共振(MRI)图像的自动分割对前列腺疾病的诊断至关重要,但是前列腺区域所占比例过小、组织边界模糊等问题为自动分割带来极大困难。针对这些问题,提出了一种基于全卷积DenseNet的前列腺MRI图像分割方法。该方法以现流行的深度学习理论为基础,利用迁移学习的思想,将DenseNet从自然图像迁移到前列腺数据集;采用反卷积和类似U-Net的全卷积神经网络结构,实现端到端的图像分割。同时引入并改进Dice相似性损失函数以解决前列腺MRI中背景所占比例远远大于前列腺区域和一些像素难以准确分割等问题。通过在PROMISE12数据集上进行实验,提出的方法Dice相似性系数达到93.25%,Hausdorff距离小于1.2 mm,相较于目前的主要方法,分割效果更好、所耗时间更短。 相似文献
13.
针对人脸识别算法准确率受面部姿态、遮挡、图像分辨率等因素影响的问题,提出一种超分辨率摆正的方法,作用于低质量无约束输入图像上,生成高清晰度标准正面视图。主要通过估计输入图像与3D模型间的投影矩阵,产生标准正面视图,通过人脸对称性的特点,补全由于姿态、遮挡等原因所产生的面部缺失像素。在摆正过程中,为了提高图像分辨率以及避免面部像素信息丢失,引入一个16层的深度递归卷积神经网络进行超分辨率重构;并提出两个扩展:递归监督和跳跃链接,来降低网络训练难度以及缩小模型体量。在经过处理的LFW数据集上实验表明,该方法对人脸识别和性别检测算法的性能具有显著提升作用。 相似文献
14.
目的 低质量3维人脸识别是近年来模式识别领域的热点问题;区别于传统高质量3维人脸识别,低质量、高噪声是低质量3维人脸识别面对的主要问题。围绕低质量3维人脸数据噪声大、依赖单张有限深度数据提取有效特征困难的问题,提出了一种联合软阈值去噪和视频数据融合的低质量3维人脸识别方法。方法 首先,针对低质量3维人脸中存在的噪声问题,提出了一个即插即用的软阈值去噪模块,在网络提取特征的过程中对特征进行去噪处理。为了使网络提取的特征更具有判别性,结合softmax和Arcface(additive angular margin loss for deep face recognition)提出的联合渐变损失函数使网络提取更具有判别性特征。为了更好地利用多帧低质量视频数据实现人脸数据质量提升,提出了基于门控循环单元的视频数据融合模块,实现了视频帧数据间互补信息的有效融合,进一步提高了低质量3维人脸识别准确率。结果 实验在两个公开数据集上与较新方法进行比较,在Lock3DFace(low-cost kinect 3D faces)开、闭集评估协议上,相比于性能第2的方法,平均识别率分别提高了0.28%和3... 相似文献
15.
当图像中的人脸存在较大角度的偏转时,由于自身遮挡,单幅图像3D人脸重建方法较难获取整张人脸的纹理和几何细节.考虑人脸纹理特征分布和几何细节的特征分布的双向关联特性,提出一种统一框架下的协同补全模型TDGAN.首先,将颜色纹理和几何细节映射到同一UV空间;然后,通过统一的生成对抗网络协同补全纹理与几何,并对这2部分信息分别设计全局与局部判别器,以实现纹理和几何的全局与局部一致性;最后,为了充分利用颜色纹理和几何细节共有特征,增加了一个纹理-几何一致性约束网络,从而得到高完整度和高一致性的颜色纹理与几何细节UV图.在当前最大3D人脸数据集FaceScape的实验表明,TDGAN比独立的UV空间补全方法能得到更高质量的补全结果. 相似文献
16.
形变模型是当前人脸重建研究中的一种主要方法。针对形变模型方法中模型构建的缺陷,提出一种基于压缩感知理论的快速三维人脸重建方法。首先,利用压缩感知理论估计三维原型人脸与目标人脸的形状相似性,根据相似性对原型样本进行筛选并构建相应的形变模型,提高建模精度和效率;然后,利用特征点信息进行稀疏模型匹配,并结合径向基函数插值重建生成特定的三维人脸,提高重建表面的平滑性。在BJUT三维数据库和CAS_PEAL二维数据库上的实验结果表明,与经典方法相比,本文方法能够有效地提高重建精度和速度,重建人脸具有较强真实感。 相似文献