首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
针对不同个体的脑电信号差异大且易受到环境因素影响的问题, 结合去基线干扰及脑电通道选择方法, 提出一种基于连续卷积神经网络的情绪分类识别算法. 首先进行基线信号的微分熵(differential entropy, DE)特征的选取研究, 将数据处理为多通道输入后使用连续卷积神经网络进行分类实验, 然后选择最佳电极个数. 实验结果表明, 将实验脑电信号微分熵与被试者实验脑电前一秒的基线信号微分熵的差值映射为二维矩阵后, 在频率维度组合为多通道的形式作为连续卷积神经网络的输入, 在22通道上唤醒度和效价的分类平均准确率为95.63%和95.13%, 接近32通道的平均准确率.  相似文献   

2.
近年,情绪识别研究已经不再局限于面部和语音识别,基于脑电等生理信号的情绪识别日趋火热.但由于特征信息提取不完整或者分类模型不适应等问题,使得情绪识别分类效果不佳.基于此,本文提出一种微分熵(DE)、卷积神经网络(CNN)和门控循环单元(GRU)结合的混合模型(DE-CNN-GRU)进行基于脑电的情绪识别研究.将预处理后的脑电信号分成5个频带,分别提取它们的DE特征作为初步特征,输入到CNN-GRU模型中进行深度特征提取,并结合Softmax进行分类.在SEED数据集上进行验证,该混合模型得到的平均准确率比单独使用CNN或GRU算法的平均准确率分别高出5.57%与13.82%.  相似文献   

3.
针对传统机器学习需要人工构建特征及特征质量较低等问题,提出一种新颖的基于一维卷积神经网络(Convolutional Neural Network,CNN)的特征提取方法。采用编码思想,由卷积层和下采样层构成编码器网络提取脑电信号情感特征,随后与特征图一起输入Leaky ReLU激活函数。对于卷积预训练过程,使用交叉熵和正则化项双目标优化损失函数,之后采用随机森林分类器以获得情感分类标签。在国际公开数据集SEED上进行实验,达到94.7%的情感分类准确率,实验结果表明了该方法的有效性和鲁棒性。  相似文献   

4.
学习风格的识别与分析有助于教学者结合学生的个性化特征改进教学策略,可以有效提高教学效率和质量,在教育技术领域具有良好的发展前景.本文针对现有学习风格识别方法精度低、实现复杂、主观性强等问题,提出了一种融合脑电特征的卷积神经网络学习风格识别模型.该模型首先利用时间、空间卷积操作,充分挖掘脑电信号的时域和空间特征;然后通过构建多尺度并行卷积结构,增强了模型的特征抽象能力;最后使用全局平均池化策略减少了模型训练参数,并实现对任意大小数据的处理.在学习风格脑电测试数据集上进行实验,结果显示该算法可达到71.2%的准确率,相比于传统方法平均提高了12.1%,并减少了41%的训练参数量,证明了该模型和脑电特征的结合使用能有效识别受试者的实时学习风格.  相似文献   

5.
针对传统的自动睡眠分期准确率不足问题,提出一种将多尺度熵(MSE)和主成分分析(PCA)联合使用的自动睡眠分期方法。以8例受试者睡眠脑电(EEG)监测数据及专家人工分期结果作为样本,首先使用MSE表征受试者脑电信号不同睡眠期的非线性动力学特征;然后使用PCA的前两个主成分向量代替MSE特征进行降维,实现降低数据冗余的同时保留绝大多数EEG非线性特征;最终将新向量的特征参数输入到反馈神经网络(BPNN)分类器中实现MSE-PCA模型的脑电睡眠状态的自动识别分类。实验结果表明,自动分期准确率可达到87.9%,kappa系数0.77,该方法能提高脑电自动睡眠分期系统的准确率和稳定性。  相似文献   

6.
为了充分利用电极间的空间分布特性和多域深层次特征,提高脑电信号(electroencephalogram, EEG)情绪识别精度,提出一种采用多尺度多路混合注意力机制的方法进行脑电情绪识别。对EEG进行基线处理与空间重构,减小个体差异的同时增强空间特征信息。将时频二维和空间三维数据共同输入到多尺度多路混合注意网络(multi-scale and multi-path hybrid attention network,MS-MPHAN)进行训练,其中,设计双流时空融合模块加强时域特征和空域特征的联系;引入多尺度卷积核进行多尺度的初步特征提取,进而增加特征的视野维度;利用多路结构二次提取不同层次的深层特征,并在通道层次、二维空间层次和精细化的坐标层次对特征进行增强与融合。在DEAP数据集和DREAMER数据集上进行EEG情绪四分类识别,结果显示DEAP数据集和DREAMER数据集的平均准确率达到93.75%和98.93%,证明了所提方法在脑电情绪识别上的良好性。  相似文献   

7.
传统基于脑电信号(electroencephalogram,EEG)的情感识别主要采用单一的脑电特征提取方法,为了充分利用EEG中蕴含的丰富信息,提出一种多域特征融合的脑电情感识别新方法。提取了EEG的时域、频域和空域特征,将三域特征进行融合作为情感识别模型的输入。首先计算不同时间窗EEG信号的alpha、beta、gamma三个频段功率谱密度,并结合脑电电极空间信息构成EEG图片,然后利用卷积神经网络(convolutional neural network,CNN)与双向长短期记忆网络(bidirectional long short-term memory network,BLSTM)构建CNN-BLSTM情感识别模型,分别对时、频、空三域特征进行学习。在SEED数据集对该方法进行验证,结果表明该方法能有效提高情感识别精度,平均识别准确率达96.25%。  相似文献   

8.
为了充分提取脑电信号多频带的时频信息和保留导联空间分布的位置信息,提出了一种基于集成胶囊网络的情绪识别模型.对预处理过的脑电信号进行小波包特征提取,并将Theta、Alpha、Beta、Gamma四个频带的小波系数能量值填充于根据导联空间分布映射的稀疏矩阵中,拼接构成多频带特征矩阵,通过胶囊网络对特征数据进行训练,对不...  相似文献   

9.
基于单尺度二维、三维卷积的脑电情感识别算法存在原始信号映射到高维特征矩阵过程中信息易丢失、模型参数量大、提取特征相对单一等问题。提出多尺度金字塔交互注意力残差网络(MPIAResnet)。利用多尺度一维卷积核直接提取原始脑电信号的多尺度空间特征,将标准卷积替换为分组卷积,相比二维、三维卷积具有更少的参数量,同时利用通道交互注意力机制优化特征提取过程。在此基础上,与双向GRU(BiGRU)融合组成MPIAResnetBiGRU网络,进一步提取脑电信号的上下文语义信息,实现脑电信号的时空特征融合。基于公开数据集DEAP的实验结果表明:在受试者依赖实验中,该模型Valence和Arousal维度识别准确率达到97.60%和98.15%,相比单尺度模型提升8.56和8.36个百分点;在小批量训练集实验中,当训练集占比为30%时,测试集准确率依然可以保持在90%以上;在分频带实验中,2个高频带信号识别准确率优于低频带信号,证明了模型的有效性;而在受试者全部参与实验中,该模型的识别准确率也均优于对比方法。  相似文献   

10.
11.
提出一种基于深度卷积联合适应网络(Convolutional neural network-joint adaptation network,CNN-JAN)的脑电信号(Electroencephalogram, EEG)情感识别模型。该模型将迁移学习中联合适应的思想融合到深度卷积网络中,首先采用长方形卷积核提取数据的空间特征,捕捉脑电数据通道间的深层情感相关信息,再将提取的空间特征输入含有联合分布的多核最大均值差异算法(Multi-kernel joint maximum mean discrepancy,MK-JMMD)的适配层进行迁移学习,使用MK-JMMD度量算法解决源域和目标域分布不同的问题。所提方法在SEED数据集上使用微分熵特征和微分尾端性特征分别进行情感分类实验,其中使用微分熵特征被试内跨试验准确率达到84.01%,与对比实验和目前流行的迁移学习方法相比,准确率进一步提高,跨被试实验精度也取得较好的性能,验证了该模型用于EEG信号情感识别任务的有效性。  相似文献   

12.
柴冰  李冬冬  王喆  高大启 《计算机科学》2021,48(12):312-318
现有的脑电(EEG)情感识别研究普遍采用神经网络和单一注意机制来学习情感特征,具有相对单一的特征表示.而神经科学研究表明,不同频率和电极通道的脑电信号对情感有不同的响应程度,因此文中提出了一种融合频率和电极通道卷积注意的方法,用于脑电情感识别.具体来说,首先将EEG信号分解到不同的频带上并提取相应的帧级特征,然后用预激活残差网络来学习深层次的脑电情感相关特征,同时在残差网络的每个预激活残差单元中都融入频率和电极通道卷积注意模块,以建模脑电信号的频率和电极通道信息,并生成脑电特征的最终注意表示.在DEAP和DREAMER数据集上的独立于受试者场景下的实验结果表明,所提出的卷积注意方法相比单一注意机制更有助于增强EEG信号中情感显著信息的导入,并且能产生更好的情感识别结果.  相似文献   

13.
为了保留电极之间的空间信息以及充分提取脑电信号(Electroencephalogram,EEG)特征,提高情感识别的准确率,提出一种基于三维输入卷积神经网络的特征学习和分类算法.采用单熵(近似熵(Approximate Entropy,ApEn)、排列熵(Permutation Entropy,PeEn)和奇异值分解...  相似文献   

14.
基于多纵卷积神经网络的交通标志识别算法识别率较高,但识别和训练时间较长,实用性较差。为此,构造一种基于多尺度卷积神经网络的道路交通标志识别模型。通过改进单尺度卷积神经网络中特征提取的基网络,将网络不同层级所产生的特征融合为多尺度特征并提供给分类器,以提高低层特征的利用率。在GTSRB数据集上的实验结果表明,该模型准确识别率达到99.25%,与多纵卷积神经网络模型相比,其在保证高精度的同时,识别和训练时间的降幅均超过90%,更适用于真实路况下交通标志的精准检测。  相似文献   

15.
为了点对点自动学习脑电信号(Electroencephalogram,EEG)空间与时间维度上的情感相关特征,提高脑电信号情感识别的准确率,基于DEAP数据集中EEG信号的时域、频域特征及其组合特征,提出一种基于卷积神经网络(Convolution Neural Network,CNN)模型的EEG情感特征学习与分类算法。采用包括集成决策树、支持向量机、线性判别分析和贝叶斯线性判别分析算法在内的浅层机器学习模型与CNN深度学习模型对DEAP数据集进行效价和唤醒度两个维度上的情感分类实验。实验结果表明,在效价和唤醒度两个维度上,深度CNN模型在时域和频域组合特征上均取得了目前最好的两类识别性能,在效价维度上比最佳的传统分类器集成决策树模型提高了3.58%,在唤醒度上比集成决策树模型的最好性能提高了3.29%。  相似文献   

16.
支持向量机表情识别的准确率和时间消耗取决于核函数选取和特征数目。该文讨论了支持向量机的表情分类和核函数的实验方法,并进一步探讨了核和特征数目与识别准确率和时间消耗的关系。基于JAFFE数据库和LibSVM2.86的实验表明,随着特征数目的增加,训练时间呈指数增长,交叉验证准确率先增加后降低,表现为某种单峰分布。同时表明,线性核时间消耗最小,径向基核在特征数目较小时,具有最好的识别率,而在特征数目较大时,线性核最优。综合时间和识别率考虑,在低维时,优先选用径向基核,高维优先选用线性核。  相似文献   

17.
脑电信号在情感识别中的应用   总被引:1,自引:3,他引:1       下载免费PDF全文
陈曾  刘光远 《计算机工程》2010,36(9):168-170
针对如何在情感识别中有效处理脑电信号和提取有用信息的问题,对实验采集的脑电信号进行小波包分解,通过对相关频段信号的重构,提取出脑电信号中能用于情感状态识别的β波节律,对其在不同情感状态下进行谱分析。仿真实验结果表明,将脑电信号中的β波节律用于情感状态识别是可行的。  相似文献   

18.
针对脑电信号情感识别率偏低的问题,提出了一种基于3DC-BGRU的脑电情感识别方法。对单通道脑电信号进行短时傅里叶变换(STFT),提取相关频带的时频信息构成二维时频图,并将多个通道的时频图构成一种全新的时间、频率和通道的三维数据形式,通过三维卷积的方式设计了一种新颖的卷积神经网络(CNN)模型对三维数据进行深层特征提取,设计双向门控循环单元(BGRU)对深层特征的序列信息进行处理并配合Softmax进行分类。实验结果表明该方法分类识别率得到提高。  相似文献   

19.
基于多尺度几何分析与核匹配追踪的图像识别   总被引:2,自引:0,他引:2  
提出一种图像特征提取与识别方法.该方法利用图像多尺度几何分析中的Contourlet变换表示图像的丰富轮廓特征信息,利用Brushlet变换表示图像的纹理和平滑特征信息,将此两部分特征信息融合组成特征矩阵.选择模糊C-均值聚类算法对特征矩阵进行聚类分析,获得其数据分布信息,再采用核匹配追踪分类器进行目标识别.该方法对图像中不同种类信息采用不同的表示工具,达到有效保持原始图像中有用信息的目的.对纹理图像和遥感图像进行分类与识别,结果表明与单独Contourlet和Brushlet特征提取方法相比,本文方法识别率高、运行时间短.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号